知识点就是掌握某个问题/知识的学习要点,那么高考数学重要知识点及公式有哪些呢?以下是小编整理的一些高考数学重要知识点及公式,仅供参考。
高考数学重要知识点
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N__或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x3>2} ,{x| x3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x21=0} B={1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
数列
1.数列的定义、分类与通项公式
(1)数列的定义:
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类:
分类标准类型满足条件
项数有穷数列项数有限
无穷数列项数无限
项与项间的大小关系递增数列an+1>an其中n∈N.
递减数列an+1
常数列an+1=an
(3)数列的通项公式:
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
2.数列的递推公式
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.
3.对数列概念的理解
(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.
(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.
4.数列的函数特征
数列是一个定义域为正整数集N.(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N.).
圆与圆的位置关系的判断方法
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d
5、d
二、圆和圆的位置关系,还可用有无公共点来判断:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
高考数学函数
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(ax)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(xa)与y=f(bx)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(xa) 或f(x2a )=f(x) (a>;0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.方程k=f(x)有解 k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>;0,a≠1,N>;0 );
8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f1(x)]=x(x∈B),f1[f(x)]=x(x∈A)。
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
1.必修课程由5个模块组成:
必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修11:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修12:统计案例、推理与证明、数系的扩充与复数、框图
系列2:3个模块
选修21:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修22:导数及其应用、推理与证明、数系的扩充与复数
选修23:计数原理、随机变量及其分布列、统计案例
选修41:几何证明选讲
选修44:坐标系与参数方程
选修45:不等式选讲
2.重难点及其考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数,圆锥曲线
高考相关考点:
1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
5.平面向量:初等运算、坐标运算、数量积及其应用
6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
10.排列、组合和概率:排列、组合应用题、二项式定理及其应用
11.概率与统计:概率、分布列、期望、方差、抽样、正态分布
12.导数:导数的概念、求导、导数的应用
13.复数:复数的概念与运算
高中数学重要公式
乘法与因式分 a2b2=(a+b)(ab) a3+b3=(a+b)(a2ab+b2) a3b3=(ab(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |ab|≤|a|+|b| |a|≤b<=>b≤a≤b
|ab|≥|a||b| |a|≤a≤|a|
一元二次方程的解 b+√(b24ac)/2a b√(b24ac)/2a
根与系数的关系 X1+X2=b/a X1__2=c/a 注:韦达定理
判别式
b24ac=0 注:方程有两个相等的实根
b24ac>0 注:方程有两个不等的实根
b24ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(AB)=sinAcosBsinBcosA
cos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1tanAtanB) tan(AB)=(tanAtanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB1)/(ctgB+ctgA) ctg(AB)=(ctgActgB+1)/(ctgBctgA)
倍角公式
tan2A=2tanA/(1tan2A) ctg2A=(ctg2A1)/2ctg
cos2a=cos2asin2a=2cos2a1=12sin2a
半角公式
sin(A/2)=√((1cosA)/2) sin(A/2)=√((1cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=√((1+cosA)/2)
tan(A/2)=√((1cosA)/((1+cosA)) tan(A/2)=√((1cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1cosA)) ctg(A/2)=√((1+cosA)/((1cosA))
和差化积
2sinAcosB=sin(A+B)+sin(AB) 2cosAsinB=sin(A+B)sin(AB)
2cosAcosB=cos(A+B)sin(AB) 2sinAsinB=cos(A+B)cos(AB)
sinA+sinB=2sin((A+B)/2)cos((AB)/2 cosA+cosB=2cos((A+B)/2)sin((AB)/2)
tanA+tanB=sin(A+B)/cosAcosB tanAtanB=sin(AB)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c22accosB 注:角B是边a和边c的夹角
圆的标准方程 (xa)2+(yb)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E24F>0
抛物线标准方程 y2=2px y2=2px x2=2py x2=2py
直棱柱侧面积 S=cxh 斜棱柱侧面积 S=cxh
正棱锥侧面积 S=1/2cxh 正棱台侧面积 S=1/2(c+c)h
圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pixr2
圆柱侧面积 S=cxh=2pixh 圆锥侧面积 S=1/2xcxl=pixrxl
弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式 s=1/2xlxr
锥体体积公式 V=1/3xSxH 圆锥体体积公式 V=1/3xpixr2h
斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长
柱体体积公式 V=sxh 圆柱体 V=pixr2h
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a—边长,S=6a2,V=a3
4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc
5、棱柱S—h—高V=Sh
6、棱锥S—h—高V=Sh/3
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3
8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6
9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)
11、r—底半径h—高V=πr^2h/3
12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3
13、球r—半径d—直径V=4/3πr^3=πd^3/6
14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6
16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高考数学选择填空答题技巧:
选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
数学填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
2024高考数学解答题的答题技巧以及方法:
数学简答题与主观的填空和选择题不同,它需要有规范的答题技巧,当我们通过对条件的分析找到解题的方法之后,其书写的过程一定要按步骤来进行。
因为高考数学的评分是按照步骤来给分的,关键的步骤不能舍去。所以在答题时尽量的要使用数学符号是比较严谨的,而且其推理思路的过程要缓缓紧扣,否则出现混乱的情况下会被扣分。