掌握好数学的拿分技巧,就会得到更高的分数,那么关于2024年高考天津卷数学真题怎么做呢?以下是小编准备的一些2024年高考天津卷数学真题及答案,仅供参考。
2024年高考天津卷数学真题及答案
新高考数学大题6大题型是什么
1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。
重视三角恒等变换下的性质探究,重视考查图形图像的变换。
2、概率与统计
(1)古典概型。
(2)茎叶图。
(3)直方图。
(4)回归方程。
(5)(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能 性事件、互斥事件、独立事件的概率计算公 式,难度不算很大。
3、立体几何
(1)平行。
(2)垂直。
(3)角。
(4)利用三视图计算面积与体积。
(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。
4、数列
(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
(4)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。
(3)利用基本不等式、对勾函数性质。
高考数学选择题十大万能解题方法
1.特值检验法:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推解除法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。