棱柱:

(1)概念:如果一个多面体有两个面互相平行,而其余每相邻两个面的交线互相平行。这样的多面体叫做棱柱。棱柱中两个互相平行的面叫棱柱的底面,其余各个面都叫棱柱的侧面,两个侧棱的公共边叫做棱柱的侧棱,棱柱中两个底面间的距离叫棱柱的高。

高考数学空间几何体柱锥台球的知识点(模板1篇)

(2)分类:①按侧棱是否与底面垂直分类:分为斜棱柱和直棱柱。侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直于底面的棱柱叫直棱柱;

②按底面边数的多少分类:底面分别为三角形,四边形,五边形…、分别称为三棱柱,四棱柱,五棱柱,…

棱锥:

(1)概念:如果一个多面体的一个面是多边形,其余各个面是有一个公共顶点的三角形,那么这个多面体叫棱锥。在棱锥中有公共顶点的各三角形叫做棱锥的侧面,棱锥中这个多边形叫做棱锥的底面,棱锥中相邻两个侧面的交线叫做棱锥的侧棱,棱锥中各侧棱的公共顶点叫棱锥的顶点。棱锥顶点到底面的距离叫棱锥的高,过棱锥不相邻的两条侧棱的截面叫棱锥的对角面。

(2)分类:按照棱锥底面多边形的边数可将棱锥分为:三棱锥、四棱锥、五棱锥…

(3)正棱锥的概念:如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

棱台:

用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台,原棱锥的底面和截面分别叫做棱台的下底面和上底面。

圆柱的概念:

以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边叫做圆柱侧面的母线。

圆锥的概念:

以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体;

圆台的概念:

用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分;

球的定义:

第一定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫球体,简称球。

半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

第二定义:球面是空间中与定点的距离等于定长的所有点的*。

球的截面与大圆小圆:

截面:用一个平面去截一个球,截面是圆面;

大圆:过球心的截面圆叫大圆,大圆是所有球的截面中半径最大的圆。

球面上任意两点间最短的球面距离:是过这两点大圆的劣弧长;

小圆:不过球心的截面圆叫小圆。

棱柱的*质:

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱锥的*质:

如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点至截面距离与棱锥高的平方比。

正棱锥*质:

①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫侧高)也相等;

②正棱锥的高、斜高、斜高在底面的射影、侧棱、底面的外接圆的半径r、底面的半边长可组成四个直角三角形。

圆柱的几何特征:

①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥的几何特征:

①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台的几何特征:

①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球的截面的*质:

*质1:球心和截面圆心的连线垂直于截面;

*质2:球心到截面的距离d与球的半径r及截面的半径r有如下关系:r2=r2d2.