初中数学阅读理解题大致可分四类:纯文型(全部用文字展示条件和问题)、图文型(用文字和图形结合展示条件和问题)、表文型(用文字和表格结合展示条件和问题)、改错型(条件、问题、解题过程都已展示,但解题过程可能要改正)。无论哪种类型,其解题步骤一般都可分为以下几步:

一、快速阅读,把握大意

初中数学阅读理解题的解题技巧(汇总5篇)

在阅读时不仅要特别留心短文中的事件情景、具体数据、关键语句等细节,还要注意问题的提出方式。据此估计是我们平常练习时的哪种类型,会涉及到哪些知识,一般是如何解决的,在头脑中建立初步印象。

二、仔细阅读,提炼信息

在阅读过程中不仅要注意各个关键数据,还要注意各数据的内在联系、标明单位,特别是一些特殊条件(如附加公式),以简明的方式列出各量的关系,提炼信息,读"薄"题目,同时还要能回到原题中去。

三、总结信息,建立数模

根据前面提炼的信息分析,通过文中关键词、句的提示作用,选用恰当的数学模型,例如由"大于、超过、不足……"等联想到建立不等式,由"恰好……,等于……"联想到建立方程,由"求哪种方案更经济……"联想到运用分类讨论方法解决问题,由"求出……和……的函数关系式或求最大值(最小值)"联想到建立函数关系,将题中的各种已知量用数学符号准确地反映出其内在联系。

四、解决数模,回顾检查

在建立好数学模型后,不要急于解决问题,而应回过头来重新审题,一是看看哪些数据、关系还没有用上,用得是否准确,要充分挖掘题中的条件并发挥它

们的作用;二是关键词句的理解是否准确、到位;三是判断所列关系式是否符合生活经验;四是在解题过程中要善于反思,发现问题及时纠正。

在解题中需注意的几个问题:

1、克服缺乏仔细审题意识,避免因片面审题,快速答题带来的失误。

2、克服受思维定势的影响,用"想当然"代替现实的偏面意识。

3、忽略题中的关键词语、条件,对题意的理解有偏差。

4、善于回顾反思,及时发现问题纠正错误,克服侥幸意识带来不必要的失误。

5、平时要重视阅读、理解和表述能力的培养,加强数学语言的理解和应用,数学语言包括文字语言、符号语言、图形语言、数表,它是数学思维和数学交流的工具,所以要仔细梳理问题的脉络结构,培养良好的思维习惯。

初中数学题型解题技巧2

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

初中数学解题技巧:题型特点

(1)概念*强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念*强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、*质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨*:这个特点源于数学的高度抽象*、系统*和逻辑*。作为数学选择题,尤其是用于选择*考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨*的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特*在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示*,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

初中数学函数解题技巧3

初中数学函数解题技巧就在下面,函数看着很难,其实不难,大家看看下面的数学函数解题技巧吧!

1、注重“类比”思想

 

不同的事物往往具有一些相同或相似的属*,人们正是利用相似事物具有的这种属*,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。

初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象*质的研究、及基本解题方法上都有着本质上的相似。

因此阳光学习网刘老师指出,采用类比的方法不但省时、省力,还有助于学生的理解和应用。

是一种既经济又实效的教学方法。

2、注重“数形结合”思想

 

数形结合的思想方法是初中数学中一种重要的思想方法。

数学是研究现实世界数量关系和空间形式的科学。

而数形结合就是通过数与形之间的对应和转化来解决数学问题。

它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。

函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。

3、注重自变量的取值范围

 

自变量的取值范围,是解函数问题的难点和考点。

正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。

这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。

4、注重实际应用问题

 

学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。

这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。

初中数学解题方法:数学解题技巧4

要学好数学,学会解题是关键。在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。以下是小编搜索整理初中数学解题方法:数学解题技巧,欢迎大家阅读!

一、数学思想方法在解题中有不可忽视的作用

解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。

基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说“如果没有反思,就错过了解题的的一次重要而有意义的方面。”

教师在教学设计中要让解学生好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。

1.函数与方程的思想

函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与*质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的*质去分析解决问题。

2.数形结合的思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

3.分类讨论的思想

分类讨论的思想之所以重要,原因一是因为它的逻辑*较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能*。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型3:由*质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:由图形位置的不确定*引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面*,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类

标准;③按所分类别进行讨论;④归纳小结、综合得出结论。注意动态问题一定要先画动态图。

4.转化与化归的思想

转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

常见的转化方法有

(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.

(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.

(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.

(5)特殊化方法:把原问题的形式向特殊化形式转化,并*特殊化后的问题,使结论适合原问题.

(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.

(7)坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径

转化与化归的指导思想

(1)把什么问题进行转化,即化归对象.

(2)化归到何处去,即化归目标.

(3)如何进行化归,即化归方法.

化归与转化思想是一切数学思想方法的核心.

二、中学数学解题中的的基本方法

1.观察与实验

(1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、*质和解决问题的途径。

(2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观*强,特征清晰,同时可以试探解法、检验结论的重要优势。

2.比较与分类

(1)比较法

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

(2)分类的方法

分类是在比较的基础上,依据数学对象的*质的异同,把相同*质的对象归入一类,不同*质的对象归为不同类的思维方法。如上图中一次函数的k在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3.特殊与一般

(1)特殊化的方法

特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理*。(2)一般化的方法

4.联想与猜想

(1)类比联想

类比就是根据两个对象或两类事物间存在着的相同或不同属*,联想到另一事物也可能具有某种属*的思维方法。

初中数学的解题技巧5

休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过了,可还存在你没检查出来或检查错了的可能*,所以说是80%。虽然是80%,但已经很不简单了。在一次考试中,能将自己的水平发挥出80%就是一次成功的考试。你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如果这时考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。但是做是做不出来了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如何攻呢?可用换思路解题法来攻。

换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在考试过程中迸发过灵感的火花。当然如果你甚至能看透某题的陷阱和迷惑在哪里,你就是顶尖高手了。总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三十的礼花一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。