甲、乙两车分别从A,B两地同时相向开出,四小时后两车相遇,然后各自继续行驶三小时,此时甲车距B地10千米,乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地?

解法一:说明甲车和乙车4-3=1小时共行10+80=90千米。两车行4+3=7小时,甲车比乙车多行80-10=70千米。所以甲车比乙车每小时多行70÷7=10千米。所以甲车每小时行(90+10)÷2=50千米,乙车每小时行90-50=40千米。当甲到底B地时,用去10÷50=0.2小时,乙行余下的80千米需要80÷40=2小时,所以还需要2-0.2=1.8小时。

小升初数学应用题详解(优秀9篇)

解法二:总路程是(10+80)÷(1-3/4)=360千米。甲车行4+3=7小时行了全程的(360-10)÷360=35/36,所以,甲车行完全程需要7÷35/36=7.2小时。乙车7小时行了全程的(360-80)÷360=7/9,所以乙车行完全程需要7÷7/9=9小时。所以甲车到达时,乙车还需要9-7.2=1.8小时。

解法三:两车行4+3=7小时,甲车比乙车多行80-10=70千米。甲车每小时比乙车多行70÷7=10千米。如果再行1小时,那么甲车比乙车就多行70+10=80千米,而且甲车和乙车共行了两个全程。所以,甲车超出部分和乙车还差的部分相等,即80÷2=40千米。所以,乙车需要80÷40=2小时到达。甲车之需要10÷(10+40)=0.2小时到达。所以当甲车到达时,乙车还需要2-0.2=1.8小时。

[小升初数学应用题详解]相关文章:


小升初数学应用题题解2

有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推.最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多.那么这群猴子有多少只?

方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子

剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。

所以a+4=b+8,即b=a4个。那么就有9a=10(a4)+8。

解得a=32。所以桃子有3210+4=324个。

每只猴子分得32+4=36个,所以猴子有32436=9只。

明月清风老师的解法。

第一只猴子分得的那1/10比第二只猴子的那1/10多84=4个

第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多41/10=40个。

那么第一只猴子分得的那1/10是408=32个。

所以桃子总数是3210+4=324个。

每只猴子吃32+4=36个,那么有32436=9只猴子。

[小升初数学应用题题解]相关文章:


小升初数学应用题解析3

一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

这个题目和第8题比较近似。但比第8题复杂些!

大轿车行完全程比小轿车多17-5+4=16分钟

所以大轿车行完全程需要的时间是16(1-80%)=80分钟

小轿车行完全程需要8080%=64分钟

由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。

大轿车出发后802=40分钟到达中点,出发后40+5=45分钟离开

小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+642=49分钟了。

说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。

既然后来两人都没有休息,小轿车又比大轿车早到4分钟。

那么追上的时间是小轿车到达之前4(1-80%)80%=16分钟

所以,是在大轿车出发后17+64-16=65分钟追上。

所以此时的时刻是11时05分。

[小升初数学应用题解析]相关文章:


小升初数学应用题讲解4

一支*部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支*部队的行程是多少千米?

解:车速提高1/9,所用的时间就是预定时间的1(1+1/9)=9/10,所以预定时间是20(1-9/10)=200分钟。

速度提高1/3,如果行完全程,所用时间就是预定时间的1(1+1/3)=3/4,即提前200(1-3/4)=50分钟。

但却提前了30分钟,说明有3050=3/5的路程提高了速度。

所以,全程是72(1-3/5)=180千米。

这题我有一巧妙的,小学生容易懂的算术方法。

如将车速比原来提高9分之1,速度比变为10:9,所以时间比为9:10,原来要用时20*(10-9)=200分。

如一开始就提高3分之1,就会用时:3*200/4=150分,这样提前50分,而实际提前30分,

所以72千米占全程的1-30/50=20/50,

所以全程72/(20/50)=180千米。

回答者:纵览飞云魔法师四级1918:56

[小升初数学应用题讲解]相关文章:


小升初数学应用题解答5

一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?这个问题很难理解,仔细看看哦。

原定时间是110%(1-10%)=9小时,如果速度提高20%行完全程,时间就会提前9-9(1+20%)=3/2,因为只比原定时间早1小时,所以,提高速度的路程是13/2=2/3,所以甲乙两第之间的距离是180(1-2/3)=540千米。

老师的解答如下:

第18题我是这样想的:原速度:减速度=10:9,所以减时间:原时间=10:9,所以减时间为:1/(19/10)=10小时;原时间为9小时;原速度:加速度=5:6,原时间:加时间=6:5,行驶完180千米后,原时间=1/(1/6)=6小时,所以形式180千米的时间为96=3小时,原速度为180/3=60千米/时,所以两地之间的距离为60*9=540千米


小升初数学列方程应用题的详解6

【含义】

把应用题中的未知数用字母代替,根据等量关系列出含有未知数的等式方程,通过解这个方程而得到应用题的*,这个过程,就叫做列方程解应用题。

【数量关系】

方程的等号两边数量相等。

【解题思路和方法】

可以概括为审、设、列、解、验、答六字法。

(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。

(2)设:把应用题中的未知数设为。

(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。

(4)解;求出所列方程的解。

(5)验:检验方程的解是否正确,是否符合题意。

(6)答:回答题目所问,也就是写出答问的话。

同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。

例1甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?

解第一种方法:设乙班有人,则甲班有(90)人。

找等量关系:甲班人数=乙班人数230人。

列方程:9030

解方程得=40从而知90=50

第二种方法:设乙班有人,则甲班有(230)人。

列方程(230)+=90

解方程得=40从而得知230=50

答:甲班有50人,乙班有40人。

例2鸡兔35只,共有94只脚,问有多少兔?多少鸡?

解第一种方法:设兔为只,则鸡为(35)只,兔的脚数为4个,鸡的脚数为2(35)个。根据等量关系兔脚数+鸡脚数=94可列出方程4+2(35)=94解方程得=12则35=23

第二种方法:可按鸡兔同笼问题来解答。假设全都是鸡,

则有兔数=(实际脚数2鸡兔总数)(42)

所以兔数=(94235)(42)=12(只)

鸡数=3512=23(只)

答:鸡是23只,兔是12只。

例3仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?

解第一种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。9404125=110(袋)

第二种方法:从总量里减去甲汽车4次运的袋数,即为乙汽车共运的袋数,再除以4,即是所求。(9401254)4=110(袋)

第三种方法:设乙汽车每次运袋,可列出方程9404=125

解方程得=110

第四种方法:设乙汽车每次运袋,依题意得

(125+)4=940解方程得=110

答:乙汽车每次运110袋。


小升初数学奥数应用题7

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(101)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(101)=32(元)

一张桌子的价钱:32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)

答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)

答:甲每小时比乙快2千米。

4、李*和张强付同样多的钱买了同一种铅笔,李*要了13支,张强要了7支,李*又给张强0.6元钱。每支铅笔多少钱?

想:根据两人付同样多的钱买同一种铅笔和李*要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李*要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13(13+7)÷2]=0.6÷[1320÷2]=0.6÷3=0.2(元)

答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:148=6(时)

两地间路程:(40+45)×6÷2=85×6÷2=255(千米)

答:两地相距255千米。

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

想:第一小组停下来参观果园时间,第二小组多行了[3.5(4.53.5)]千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.53.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5(4.53.5)=3.51=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.53.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)

甲仓存粮:14×45=565=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:(40010×4)÷(4+5)=(40040)÷9=360÷9=40(米)

甲乙两队每天共修的米数:40×2+10=80+10=90(米)

答:两队每天修90米。

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:(45530×6)÷(6+5)=(455180)÷11=275÷11=25(元)

每张桌子的价钱:25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)×[40÷(7565)]=140×[40÷10]=140×4=560(千米)

答:甲乙两地相距560千米。


小升初数学试题应用题8

1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?

*:甲收8元,乙收2元。

解:

三人将五条鱼平分,客人拿出10元,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为甲钓了三条,相当于甲吃之前已经出资3*6=18元,乙钓了两条,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以

甲还可以收回1810=8元

乙还可以收回1210=2元

刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?

*22/25

最好画线段图思考:

把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。

所以,今年的成本占售价的22/25。

3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?

解:

原来甲.乙的速度比是5:4

现在的甲:5×(120%)=4

现在的乙:4×(1+20%)4.8

甲到B后,乙离A还有:54.8=0.2

总路程:10÷0.2×(4+5)=450千米

4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?

*为64:27

解:根据周长减少25%,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据体积增加1/3,可知体积是原来的4/3。

体积÷底面积=高

现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27

或者现在的高:原来的高=64/27:1=64:27

5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?

第二题:*为65吨

橘子+苹果=30吨

香蕉+橘子+梨=45吨

所以橘子+苹果+香蕉+橘子+梨=75吨

橘子÷(香蕉+苹果+橘子+梨)=2/13

说明:橘子是2份,香蕉+苹果+橘子+梨是13份

橘子+香蕉+苹果+橘子+梨一共是2+13=15份

[小升初数学试题应用题]相关文章:


小升初数学应用题解题常用方法9

1、简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

2、解题步骤:

a.审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

也可以复述条件和问题,帮助理解题意。

b.选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,

联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

c.检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

d.*:根据计算的结果,先口答,逐步过渡到笔答。

3、解答加法应用题:

a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

4、解答减法应用题:

a.求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b.求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c.求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

5、解答乘法应用题:

a.求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b.求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

6、解答除法应用题:

a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d.已知一个数的几倍是多少,求这个数的应用题。

[小升初数学应用题解题常用方法]相关文章: