一元二次方程(一)

一、素质教育目标 (一)知识教学点:

一元二次方程根与系数的关系教学设计(专业5篇)

帮助学生理解一元二次方程及整式方程的意义;

确保学生掌握一元二次方程的一般形式,并正确识别二次项系数、一次项系数以及常数项。

(二)能力训练点:

通过引入一元二次方程,培养学生分析问题和解决问题的能力;

通过学习一元二次方程的概念,培养学生对概念理解的完整*和深刻*。

二、教学重点、难点

教学重点:一元二次方程的意义及一般形式。

教学难点:正确识别一般式中的“项”和“系数”。

三、教学步骤 (一)明确目标

通过电脑演示以下*作:将一块长方形的薄钢片,在其四个角上各截去一个相同的小正方形,然后将四边折起,形成一个无盖的长方体盒子。演示完毕后,让学生实际*作一下所演示的过程,使用事先准备好的长方形纸片和剪*。学生的实际*作将为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力。

假设现有一块长80cm、宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后制成底面积为1500cm²的无盖长方体盒子。学生将如何求出截去的小正方形的边长?通过引导学生设立未知数、列方程,经整理得到方程x² 70x + 825 = 0。解这个方程将显示出当前所学知识的不足,需要学习新知识。学习了本章的知识后,学生将能解决上述问题。 在黑板上写下:“第十二章 一元二次方程”。教师用适当的语言激发学生的求知欲和学习兴趣。

(二)整体感知

(三)重点、难点的学习及目标完成过程

复习提问: (1)什么是方程?你们之前学过哪些方程? (2)什么是一元一次方程?“元”和“次”的含义是什么? (3)什么是分式方程? 通过提出这些问题并解决它们,为深刻理解一元二次方程的概念做好铺垫。

引例:如果要从一个面积为150cm²的长方形铁片上剪下一个长比宽多5cm的长方形,应该如何剪?通过引导,启发学生设立未知数列方程,并经整理得到方程x² + 5x 150 = 0。将此方程与章节前的引例所得方程x² + 70x + 825 = 0 进行观察和比较,从而得出整式方程和一元二次方程的概念: 整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程。 一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程。 一元二次方程的概念是在整式方程的前提下定义的。一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”。搞清楚“元”和“次”的概念将为理解一元三次方程等打下基础。一元二次方程的定义是指方程进行合并同类项整理后而言的。这实际上是给出要判定方程是否为一元二次方程的步骤:首先进行合并同类项整理,然后按照定义进行判断。

练习:指出下列方程中哪些是一元二次方程? (1)x(5x 2) = x(x + 1) + 4x²; (2)7x² + 6 = 2x(3x + 1); (3)

《一元二次方程的根与系数的关系》教学计划2

教学内容:

一元二次方程的根与系数的关系

教学目标:

知识与技能目标:掌握一元二次方程的根与系数的关系并会初步应用.过程与方法目标:培养学生分析、观察、归纳的能力和推理论证的能力.情感与态度目标:1.在探究中得出结论,获取成功的体验,激发学习热情,建立自信心。

2.培养学生去发现规律的积极*及勇于探索的精神.

教学重、难点:

重点:根与系数的关系及其推导。

难点:正确理解根与系数的关系,灵活运用根与系数的关系。

教学程序设计:

一、复习引入:

1、写出一元二次方程的一般式和求根公式.

请两位同学写在黑板上,其他同学在纸上默写,交换检查,互相更正。对出错严重之处加以强调。

2、解方程①x25x+6=0,②2x2x+3=0.

观察、思考两根和、两根积与系数的关系.

提问:所有的一元二次方程的两个根都有这样的规律吗?

观察、思考两根和、两根积与系数的关系.

在教师的引导和点拨下,由学生大胆猜测,得出结论。

二、探究新知

推导一元二次方程两根和与两根积和系数的关系.

设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.试计算(1)x1+x2(2)x1*x2一名学生在板书,其它学生在练习本上推导.过程略。

由此得出,一元二次方程的根与系数的关系:

结论1.如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么:

bcx1?x2,x1?x2?aa

教师举例说明,学生理解记忆。

1、验根.

(口答)判定下列各方程后面的两个数是不是它的两个根.

(1)x26x+7=0;(1,7)

(2)3x25x+2=0;(5/3,2/3)

(3)x2+9=6x(3,3)

要求:学生先思考,再举手抢答,调动学习气氛。

注意:①将方程化为标准形式

②计算准确,公式要用对

2、已知方程一根,求另一根.

例:已知方程5x2+kx6=0的根是2,求它的另一根及k的值.

先由学生用自己的办法解答,老师巡视后,请具有代表*的解法的同学将解法板书在黑板上,经点评后,有同学评价各种解法的优劣,学生进行比较,体验方法的优越*,从而认识到根与系数关系的应用价值。

小结:

验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一般形式,(2)注意符号

3、(口答)下列方程中,两根的和与两根的积各是多少?

(1)x22x+1=0;(2)x29x+10=0;

(3)4x27x+1=0;(4)9x+x2=0;

(5)x2=9

此组练习的目的是更加熟练掌握根与系数的关系.

根据题目的计算难易选择不同层次的学生回答,对答对的同学给与充分的表扬,对答错者应引导其掌握方法,并多给一次机会,让其得以消化和巩固,同时增强学生自信,提高学习积极*。

反思(1)(2)

导出结论2:如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=p,x1·x2=q.注意:结论1具有一般形式,结论2有时给研究问题带来方便.

三、反馈训练应用提高

已知方程3x27x+m=0的根是1,求它的另一根及m的值.

本题培养学生对具体问题的理解能力和分析能力,考查根与系数的关系的灵活运用,在解题过程中,学生可能会出现不同的解法,这时教师应先予以肯定,同时要引导学生比较二者的差异,体现新知的应用价值。

拓展:

已知x1,x2是方程2x2+3x1=0的两个根,试求:(1)x12x2+x1x22,

(2)(x1+x2)2.

本题的设计要求知识的迁移能力较强,学生在尝试时定会遇到各种阻碍,这正是教师想要达到的效果,只有产生了疑问,有了矛盾的激发,课堂才会更精彩。此时,教师应带领学生进行分析,引导学生联系所学知识,分析所求与已知间的联系,共同探究解决疑难的办法,说明矛盾产生的原因。

四、达标检测

1、关于x的方程ax2?(3a?1)x?2(a?1)?0有两个不相等的实根x1、x2,且有

x1?x1x2?x2?1?a,则a的值是

A.1B.1C.1或1D.2

2、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。

(1)求k的取值范围;

(2)如果x1+x2x1x2<1且k为整数,求k的值。

五、小结提高

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行.它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础.

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力.

六、布置作业

必做题

1212122.已知方程2x27x+m=0的根是4,求它的另一根及m的值.选做题mx3.方程2?2mx?m?1?0(m?0)

有一个正根,一个负根,求m的取值范围。

七、板书设计

结论1

例题

一元二次方程根与系数的关系结论2

上文为大家推荐人教版初三数学一元二次方程的根与系数的关系教学计划模板,希望大家仔细阅读,愿大家生活愉快。

八年级数学教案之一元二次方程根与系数的关系3

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

(二)重点、难点

一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

(三)教学目标

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

九年级数学《一元二次方程的根与系数的关系》教案4

一、复习引入

导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?

二、探究新知

1.课本思考

分析:将(xx1)(xx2)=0化为一般形式x2(x1+x2)x+x1x2=0与x2+px+q=0对比,易知p=(x1+x2),q=x1x2.即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.

2.跟踪练习

求下列方程的两根x1、x2.的和与积.

x2+3x+2=0;x2+2x3=0;x26x+5=0;x26x15=0

3.方程2x23x+1=0的两根的和、积与系数之间有类似的关系吗?

分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?

4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a如何教育如何教育不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?

分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.

5.跟踪练习

求下列方程的两根x1、x2.的和与积.

13x2+7x+2=0;3x2+7x2=0;3x27x+2=0;3x27x2=0;

25x1=4x2;5x21=4x2+x

6.拓展练习

1已知一元二次方程2x2+bx+c=0的两个根是1,3,则b=,c=.

2已知关于x的方程x2+kx2=0的一个根是1,则另一个根是,k的值是.

3若关于x的一元二次方程x2+px+q=0的两个根互为相反数,则p=若两个根互为倒数,则q=.

分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数?

一元二次方程根与系数的关系优秀教学设计5

教材分析

1.一元二次方程根与系数的关系(也称韦达定理)是在学习了一元二次方程的解法和根的判别式之后引入的,课标要求通过本节内容的学习能运用韦达定理由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和、两根的平方和及两根之差;教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2推导出韦达定理,以及能够建立以数x1、x2为根的一元二次方程的方程模型;是对前面知识的巩固与深化,又为以后的知识打下基础,它深化了两根与系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,是方程理论的重要组成部分。

2.韦达定理是初中代数中的一个重要定理,这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

学情分析

1.学生已学习用求根公式法解一元二次方程,但是有一部分在把一些较复杂一点的一元二次方程化为一元二次方程的一般形式的时候,要么常在去括号、移项或者合并同类项的时候出问题,要么就在解方程过程中不能正确代入各项系数;或者就在最后不会把计算结果化成最简单的形式;

2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征;

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、*等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重点和难点

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。