一、教学内容
学生已经掌握了长方体和正方体的特征、表面积与体积的计算方法,还直观认识了圆柱。在这些知识的基础上,本单元教学圆柱和圆锥,主要内容有:圆柱和圆锥的特征,圆柱的侧面积与表面积,圆柱和圆锥的体积计算。
全单元编排了5道例题、四个练习以及整理与练习,大致分成五段教学。
例1、练习五,圆柱和圆锥的形状特征;
例2、例3、练习六,圆柱的侧面积和表面积;
例4、练习七,圆柱的体积;
例5、练习八,圆锥的体积;
整理与练习综合应用全单元的知识,实践活动扩展知识、开拓视眼。
二、教材编写特点和教学建议
1.按整体部分整体的线索,分别教学圆柱和圆锥的结构特点。
学生认识几何体一般先整体感知形状,再仔细研究结构与特征,在此基础上归纳描述,建立形体概念。
例1先教学圆柱的特征,再教学圆锥的特征。这是因为学生对圆柱已有直观感受,对圆锥比较陌生。圆柱和圆锥的形状虽然有明显的区别,但它们都有圆形底面、弯曲的侧面。先认识圆柱,有利于认识圆锥。
在现实的情境中初步认识圆柱和圆锥。例题在图画里呈现许多圆柱、圆锥形状的物体,让学生从中找出圆柱形状物体,告诉他们有些物体的形状是圆锥,还要回忆生活中的其他例子,体会这两种形状的物体是比较常见的,为认识圆柱和圆锥的特征搜集了丰富的材料。
观察交流,分别描述圆柱和圆锥的结构特点。教材要求学生仔细观察圆柱和圆锥,发现它们的特征。圆柱的特征突出三点:从上到下始终一样粗;两个底面是相同的圆形;侧面是一个曲面。圆锥的特征也突出三点;有一个顶点;一个底面是圆形;侧面是一个曲面。在学生交流的基础上,出现圆柱和圆锥的几何图形,图文结合指出圆柱和圆锥的底面侧面和高。这些都是与形状特征有关的概念,还是继续教学侧面积、表面积、体积必需的基础知识。
圆柱与圆锥的高都是特定的概念,圆柱的高是它两个底面之间的距离,圆锥的高是它顶点到底面圆心的距离。教材在圆柱和圆锥的几何图形里用虚线画出了圆柱两个底面圆心间的线段,圆锥顶点到底面圆心的线段,还在图形外面标注高,让学生理解圆柱和圆锥的高分别是这两条线段的长,还暗示了测量圆柱、圆锥的高的方法。
通过识别加强形体概念。第19页练一练找出圆柱形或圆锥形的物体,进一步突出圆柱和圆锥的特征,加强形体概念。有些物体的底面是多边形,不是圆形;有些物体的两个底面都是圆形,但大小不同;有些物体的两个底面虽然是相同的圆,但两底之间不一样粗,它们都不是圆柱形的物体。
在练习里发展空间观念。练习五第1题巩固有关圆柱、圆锥特征的基础知识。第2题指出圆柱、圆锥的三视图,体会从正面、侧面看到的形状要用平面图形来表示。第3、4题体会形旋转成体,形的尺寸决定体的底面大小和高的长短。第5题利用教科书提供的材料制作圆柱、圆锥,体会侧面是平面图形卷成的曲面,学会测量底面直径和高的方法,计算底面周长和面积,复习圆的知识。学生的空间观念在观察、*作、制作的过程中得到发展。
2.展开圆柱的侧面、表面、研究侧面积和表面积的计算方法。
例2教学圆柱的侧面积,例3教学圆柱的表面积。这样安排,符合知识间的关系,突出侧面积是认知的重点。
指导展开圆柱侧面的方法,理解侧面展开后的形状。例2计算圆柱形罐头侧面的商标纸的面积,在问题情境里,学生知道商标纸是围到圆柱侧面上的,于是产生把商标纸展开的愿望。教材指导沿着接缝剪开,接缝的长是圆柱的高,沿着接缝剪就是沿着高剪,展开是一张长方形纸。学生在围剪展围的活动中,体会了圆柱侧面展开是一个长方形。
指点方向,探索侧面积的算法。计算长方形面积的方法是长宽,怎样利用圆柱的底面直径和高计算侧面积?需要解决的问题是长方形的长和宽与圆柱有什么关系。教材让学生研究这些关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高。这样,圆柱的侧面积就可以通过底面周长高计算。得出侧面积算法是推理的结果,在推理过程中,形象思维和抽象思维都得到锻炼,空间观念得到培养。
画出表面展开图,研究表面积的算法。学生有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。例3教学圆柱的表面积,创造已有知识、经验迁移的氛围,要求学生在方格纸上画出一个圆柱的展开图。为了能顺利地画图,例题的第一个问题是沿高展开侧面,得到的长方形长和宽各是几厘米?指导学生应用圆柱侧面积知识,先画出侧面的展开图。第二个问题是两个底面分别是多大的圆?指导学生根据圆柱立体图形里的底面直径,画出两个底面圆。通过画图,看到圆柱的展开图是一个侧面(长方形)和两个底面(圆形)组成的,由此得出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。在小组里讨论怎样计算圆柱的表面积,一要理出解决问题的思路和步骤,二要根据已知的圆柱的有关条件,说说侧面积与底面积的算法。由于圆柱表面积计算比较复杂,一般分步解答。
灵活应用侧面积、表面积知识,解决实际问题。练习六是圆柱侧面积、表面积的实际应用,解答问题要重视数学化,把实际问题抽象成计算侧面积、底面积或表面积的数学问题。如第1题求铝皮面积是计算圆柱形队鼓的侧面积,计算羊皮面积是求圆柱形队鼓的两个底面积。再如通风管是没有底面的,彩纸糊的灯笼只有下底和侧面。另外,计算圆柱的侧面积和表面积,经常要进行繁琐的乘法运算。为此,本单元提倡学生使用计算器,把精力用于数学化上,用于规划解决问题的步骤上。
3.应用转化策略,教学圆柱的体积计算公式。
把未知转化成已知是解决新颖问题的常用策略,也是创新精神、实践能力的表现。教学圆柱的体积公式,运用了转化策略,分三步进行。
建立等底等高概念,形成等积猜想。例4教学圆柱体积的计算方法,首先出示一个长方体、一个正方体、一个圆锥,图文结合指出它们的底面积相等、高也相等。因为圆柱的体积计算公式是转化成等底、等高的长方体后推导的,学生需要形成等底等高概念。然后从长方体、正方体的体积都可以底面积高计算,得到等底、等高的长方体与正方体的体积相等。由此猜想,圆柱的体积也与等底、等高的长方体相等,形成了研究圆柱体积算法的思路。
割、拼圆柱,转化成长方体。圆柱的体积是否与等底、等高的长方体相等,要看它能不能转化成相应的长方体。学生有圆转化成长方形的经验,以此为基础,把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。这里讲近似,是因为拼成的物体的长是8段弧组成的曲线。由此想像,如果把圆柱的底面平均分成32份、64份......切开后拼成的物体的长越来越接近线段,拼成的物体越来越接近长方体。在切、拼*作以及想像中,实现了圆柱转化成长方体。
通过推理,得到圆柱体积计算公式。切、拼把圆柱转化成长方体,圆柱的体积公式还要通过推理得到。教材先指导学生研究拼成的长方体与原来的圆柱的关系,看到两个物体的体积相等、底面积相等、高也相等。再体会底面积高既是计算长方体的体积,也算得了圆柱的体积。由此得出圆柱的体积公式,并用字母表示,便于记忆和应用。
4.估计验证探索圆锥的体积公式。
就小学生现有的知识,把圆锥转化成体积相等的其他物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同
认识等底、等高的圆锥与圆柱,估计圆锥体积是圆柱的几分之几。例5图示了一个圆柱和一个圆锥,指出它们的底面积相等,高也相等。从图画直观,学生能确定圆锥的体积比圆柱小,教材让学生估计这个圆锥的体积是圆柱的几分之几。这里的估计不要求准确,也不要求全体学生有相同的*,说成、或其他分数都允许。估计要经过验证才能确认或修正,估计验证是解决问题的一种策略。
通过实验,发现等底等高的圆柱与圆锥的体积关系。首先准备器材,找等底等高的圆柱、圆锥容器各一个,教材图示了比较底面积和比较高的方法。然后在圆锥容器里装满沙子,倒入空的圆柱容器里,看看几次正好倒满。从倒沙子实验得出圆锥体积是等底等高圆柱体积的,确认或者修正原来的估计。
利用圆柱体积算圆锥体积,推导圆锥的体积公式。上面实验的结论可以用数学式子表示:圆锥的体积=等底等高圆柱的体积。圆柱的体积通过底面积高计算,所以圆锥的体积=底面积高。
编排等底等高圆柱与圆锥的体积关系的专项练习。掌握圆锥体积计算方法的关键在理解和应用等底等高圆锥、圆柱的体积关系,即圆柱的体积是等底等高圆锥的3倍,圆锥的体积是等底等高圆柱的。练习八里有这方面的专项训练,如第2题、第4题、第5题等。第2题在圆锥容器里注满水倒入等底等高的空圆柱容器,水只占圆柱容器空间的。因此,水面的高只是圆柱高的。第5题里的圆锥只与底面直径9厘米、高4厘米的圆柱的体积相等。圆锥与底面直径3厘米、高9厘米的圆柱的体积不相等,因为圆锥的底面积不是圆柱底面积的3倍。
5.测量形状不规则的物体的体积。
生活中有大量形状不规则的物体,它们的体积如何测量?实践活动《测量物体的体积》解决这个问题。
转化成圆柱算体积。把土豆放入存水的圆柱容器,能测量体积。教材安排小组合作学习,先测量圆柱容器的底面积,以及放入土豆前的水面高度;再把土豆放进去,测量放土豆后的水面高度。学生能够从水面上升,体会那段圆柱的体积就是土豆的体积。进行这项活动要注意两点,一是在圆柱容器的里面测量它的底面直径和水面高度,并算出底面积。二是帮助学生理解水面高度变化与土豆体积的关系。
利用质量与体积的比值算体积。同一种材料,物体的质量与体积的比值(即比重)是一定的,物体的质量除以比重的商是物体的体积。如铁的比重是每立方厘米7.8克,一块质量为780克的铁块的体积是7807.8=100(立方厘米)。这次实践活动的第二个内容就是应用这种关系算体积,分三步进行。第一步用测量土豆体积的方法分别测量两块铁块的体积,用天平称出这两块铁块的质量。第二步把两块铁块的体积和质量填入教材设计的表格,分别算出质量与体积的比值,发现比值是相同的。第三步用天平称出另一块铁块的质量,通过质量除以比重求出体积。开展这项活动也要注意两点,一是先测量的两块铁块的体积要尽量准确,否则,得不到质量与体积的比值一定。二是帮助学生理解质量除以比重的商是体积。
小学六年级圆柱和圆锥数学教案2
单元教学要求:
1.使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:认识圆柱的侧面。
教学过程:
一、复习旧知
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)
二、教学新课
1.认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……
4.教学侧面积计算。
(1)认识侧面的形状。
圆柱和圆锥六年级下数学教案3
单元教学要求:
1.使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:认识圆柱的侧面。
教学过程():
一、复习旧知
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)
二、教学新课
1.认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……
4.教学侧面积计算。
(1)认识侧面的形状。
教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生*作后提问:你发现圆柱体的侧面是什么形状?
(2)侧面积计算方法。
①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。
②得出计算方法。
提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)
(3)教学例1
出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。
三、巩固练习
1.提问:这节课学习了什么内容?
2.做圆柱体。
让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。
3.做“练一练”第3题。
指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。
4.思考:
如果圆柱的底面周长和高相等,侧面展开是什么形状,
四、布置作业
课堂作业:练习一第2题。
家庭作业:练习一第3题。
圆柱和圆锥六年级数学教案4
单元教学要求:
1.使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识
教学内容:教材第3~4页圆柱和圆柱的侧面积、练一练,练习一第13题。
教学要求:
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:认识圆柱的侧面。
教学过程:
一、复习旧知
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)
二、教学新课
1.认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓
4.教学侧面积计算。
(1)认识侧面的形状。
六年级数学教案设计:圆柱和圆锥5
教学目标:
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
教学过程:
一、开门见山、温固引新。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
(2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?
(3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1)出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1)学生*完成;
(2)同桌互查;
(3)学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?
二、解决实际问题:
最佳设计方案。
师:问题是这样的:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
三、深化应用。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
四、课堂总结。
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的心情及感受。
其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?
五、补充题详见共享空间
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对*地开展复习。
下面补充这样几题:
市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。
1.
(1)这个水池占地多少平方米?
(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?
(3)这个水池装满水,最多能装多少立方米?
(4)在池口围一圈栏杆,栏杆长多少米?
2.一辆压路机的前轮是圆柱形,轮宽1.8米,直径是1.5米。如果车轮每分钟滚动5周,10分钟压路面多少平方米?压路机10分钟前进了多少米?
3.一个圆锥形沙堆,底面半径3米,高2米,用这堆沙在5米宽的公路上铺10厘米厚的路面,能铺多长?
小学六年级数学教案:圆柱、圆锥的复习6
教学内容:教材第21页复习第1~5题。
教学要求:
1.使学生进一步认识圆柱、圆锥的特点.能判断一个物体或立体图形是不是圆柱或圆锥。
2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。
教学重点:进一步认识圆柱、圆锥的特点。
教学难点:进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。
教学过程:
我们已经学完了圆柱和圆锥这一单元,今天开始复习圆柱和圆锥。(板书课题)通过复习,一方面,要进一步认识圆柱和圆锥的特征,熟悉圆柱和圆锥各部分的名称;另一方面,要进一步掌握圆柱表面积、圆柱和圆锥体积(包括容积)的汁算方法,提高解决实际问题的能力。
二、复习特征
1.说出物体名称。
出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。
2.复习特征。
做复习第1题。
(1)同时出示圆柱和圆锥的图形。
指名学生说出各图的名称。(板书:圆柱、圆锥)
(2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。
(3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?
三、复习计算
做复习第2题。
1、出示表格,说明要求,
让学生计算,填在表格里。学生口答结果,老师板书填表。
2、提问:圆柱的表面积怎样计算的?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高?这三道题计算时有什么不同的地方?圆柱的体积怎样计算的,圆柱的体积汁算公式是怎样得到的?(强调把个新知识转化成旧知识,得出新的结论)这里哪两题计算过程是相同的,哪一题不同?为什么?圆锥的体积怎样计算的?圆锥的体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?
四、课堂小结
通过这节课的复习,你有哪些收获?
五、课堂作业
复习第35题。
小学六年级数学教案:圆柱与圆锥7
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理*的解决问题的能力。
单元重点:圆柱体体积的计算
单元难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:
(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知r或d求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手*作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手*作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的()。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答
(2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红*油漆粉刷,每平方米需用多少油漆?写出基本关系再解答
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)
课时安排:1、圆柱的认识31页至33页及例1
2、圆柱的表面积33页例2例3
3、圆柱的体积公式的推导36页例4及补充一道已知r求v的例题。
4、认识圆柱的容积37页例5
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10
6、圆锥的认识41页
7、圆锥的体积公式的推导42页至43页例1
8、圆锥体积的应用43页例2
六年级数学《(圆柱、圆锥)单元备课》的教案8
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理*的解决问题的能力。
单元重点:圆柱体体积的计算
单元难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:
(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知R或D求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手*作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手*作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的()。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答
(2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红*油漆粉刷,每平方米需用多少油漆?写出基本关系再解答
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)
课时安排:1、圆柱的认识31页至33页及例1
2、圆柱的表面积33页例2例3
3、圆柱的体积公式的推导36页例4及补充一道已知R求V的例题。
4、认识圆柱的容积37页例5
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10
6、圆锥的认识41页
7、圆锥的体积公式的推导42页至43页例1
8、圆锥体积的应用43页例2
第三课时课例教案:天河区华阳小学杨海英
第三课时:计算圆柱体的体积36页例4及补充例题(已知R求V)
目标:1、使学生知道圆柱体体积公式的推导过程,理解圆柱体体积的计算公式,并能正确应用公式计算圆柱体体积。
2、再次培养学生利用转化的思想探索新知的意识。
重点:圆柱体的体积公式的推导。
难点:圆柱体体积公式的推导
教具和学具:教师准备课件一个,投影仪,学生准备圆柱形的橡皮1~2块。
重点包含要素的分析:1、让学生能从知识间或图形的联系的角度想到把圆柱体转化为长方体来研究它的体积。逐渐培养学生科学的猜想能力。
2、体积公式的推导过程是学生重点掌握的内容,并且掌握转化前后两种图形各个量间的关系,也是灵活运用公式的关键。
与其它教学重点的联系:掌握V=SH是解决有关求圆柱体的体积或容积基础,同时也是下一步学习圆锥体体积计算的基础。
突出重点的策略:1、回忆圆形面积的推导过程,利用媒体课件演示把一个个完全一样的圆形堆成圆柱体的过程来启发学生猜想:圆柱体能切拼成我们学过的什么图形呢?激发学生的思维。
2、学生有前面的推测,让学生小组合作用实物(学生自备圆柱体形状的橡皮)*作,验证猜想,探索体积的计算方法。
3、补充一个已知R求V的例题进一步突出求V必须先求S。突出V=SH的基础*。
教学过程:
一、复习引入:
1、体积的概念
2、我们学过求哪些几何图形的体积?怎样求?
(为学习圆柱体的体积的意义做迁移,并为学生原有知识结构填充新知做好准备)
3、同学们知道什么是圆柱体的体积吗?
4、想知道怎样计算圆柱体的体积吗?这节课我们一起来探索圆柱体的计算方法。出课题
二、新课探索:
1、;以前我们所研究过的几何图形面积、体积的计算方法时,使用最多的是什么方法?
如:圆的面积公式是怎样得来的呢?请看多媒体课件演示过程。接着请同学们仔细观察(课件演示把一个个完全一样的圆堆成一个圆柱体)能否也利用转化的思想把圆柱体转化成学过的几何图形?
2、转化成什么图形,小组讨论。(猜想)
3、汇报猜想的结果。
4、动手实践:把圆柱体切拼成近似的长方体。
5、思考讨论:转化后的长方体与原来的圆柱体各个部分有什么联系?
6、汇报,全班交流。
长方体的体积=圆柱体的体积
长方体的高=圆柱体的高
长方体的底面积=圆柱体的底面积
7、根据以上过程请在小组内对照图形讲述圆柱体体积的计算公式。汇报如下:
长方体的体积=底面积高
圆柱体的体积=底面积高
V=Sh
8小结:正方体、长方体、圆柱体的体积的计算方法
V=Sh
三、公式的应用:1、教学例题4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(1)带领学生画图。(培养学生会画图帮助分析的能力)
(2)让学生讲方法,尝试列式。教师板书过程。
2、补充例题:已知一个圆柱形的茶叶筒,底面半径是5厘米,这个茶叶筒的体积是多少?
学生讨论方法汇报,教师板书解题过程:
3、小结:对比以上两个题的解题过程,你觉得计算圆柱体的体积一定要根据条件先计算什么呢?(明确只要不是直接给出底面积,那就必须先由条件求出底面积。并补充V=лr2h)
四、巩固练习:38页1、2
五、全课总结:今天你学到了什么?
苏教版六年级数学圆柱和圆锥的认识的教案9
教学内容:教材第1820页圆柱和圆锥、练一练以及练习五的全部习题。
教学目标:
1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。
2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。
3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。
教具学具:
1、教师准备大小不同的圆柱和圆锥实物及模型。
2、学生准备圆柱和圆锥实物以及自制的圆柱和圆锥。
3、长方形、直角三角形和半圆形的小旗。
教学过程:
一、创设情境导入新课
出示一组图形(长方体、正方体、圆柱、圆锥)。
提问学生:你能说出这些图形的名称吗?
师说明:这些形体有些是我们已认识的长方体、正方体,还有就是我们今天要学习的新的立体图形:圆柱和圆锥体。(板书课题)
二、教学新课
㈠认识圆柱的特征。
1、出示例1请同学们仔细观察上面哪些是圆柱形的?
2、你还能举出其他例子吗?
3、请你拿出自己准备好的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。
4、集体交流:
⑴上下两个面是面积相等的圆,叫做圆柱的底面。
⑵有一个曲面叫做圆柱的侧面。
⑶上下两个底面之间的距离叫做圆柱的高。
教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。
5、让学生动手量圆柱的高。
讨论:⑴怎样量更准确?
⑵如果我们换个地方量,它的高会变成多少?这说明什么?(圆柱的高有无数条)
6、师小结圆柱的特征。
㈡认识圆锥的特征
1、出示圆锥的实物,这些物体的形状是圆锥形的,简称圆锥。我们教材所讲的圆锥都是直圆锥。
2、在日常生活中,你还见过哪些圆锥形的物体?
3、利用学生课前做好的圆锥,让学生摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。
4、集体交流:
⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。
⑵从圆锥的顶点到底面圆心的距离是圆锥的高。
5、测量圆锥的高。
⑴引导学生讨论:圆锥有几条高?
⑵用直尺和三角板如何测量圆柱的高。(学生自己*作)
㈢比较圆柱和圆锥
生拿出课前准备好的圆柱和圆锥学具,指出它们的底面和侧面。(练习五第1题)
三、巩固练习
1、完成练一练。
2、练习五第2题。从正面、上面和侧面看圆柱和圆锥,看到的是什么形状?充分让学生自己观察。
3、开放练习,拓展延伸。
⑴将课前做的长方形、直角三角形和半圆形的小旗快速旋转一周,观察并想象一下各能成什么形状?
⑵师演示。
⑶自己设计小旗的形状,旋转小棒观察并想象一下所形成的形状,在小组内交流。
四、课堂小结
今天这节课你学到了哪些知识?圆锥体和圆柱体有哪些特征?
《圆柱和圆锥的认识》的教学反思
本课教学层次清楚,注重学生学法指导,注重联系生活实际,由实物抽象出几何形体,圆柱和圆锥,接着让学生举生活实例,你在周围见过哪些这样的物体?然后由学生自主交流,观察自带的圆柱和圆锥,引导学生发现特征,你发现了什么?由学生自己概括出特征.特别是教学圆柱的高有无数条,圆锥的高只有一条,这两个知识点时,由学生通过测量它们的高,并经过对比,得出结论.让学生亲生经历了知识的形成过程.
但本节课也存在许多不足,
(1)课前检查没有做,如果在课前花1分钟时间,让学生展示自己准备的立体图形,让学生体验成功的快乐,并把这种情绪带到新课的学习中,本节课的效果会更好。
(2)作业设计不科学,偏重*作,思维密度不强,容易让学生产生思维疲劳。