教学内容:

《义务教育课程标准实验教科书数学五年级下册》第65~66页。

五年级数学下册分数与除法教学设计与评析(热门1篇)

教学目标:

1.使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。

2.通过动手*作,使学生理解3的就是1的。培养学生的分析、推理能力。

教学重难点:

3张饼的是多少张

教学准备:

圆形纸片、多媒体课件

课前谈话

师:上课前我们先来交流一下对几个问题的看法:(发明与发现)

① 发明和发现是一回事吗?大家谈一谈什么叫发明,什么叫发现?

生①:发明是原来没有,经过想像创造出来,发现原来就有,后人逐步得到了。大家天天学习的数学知识是发明的?还是发现的?

生①:发明的,阿拉伯数字,就是印度人发明的。

生②:运算定律是发现的,比如说加法的交换律。

生③:数学知识既有发明的又有发现的……

师:大家的分析很有见地,其实就像大家所说的,数学知识既有发现,又有发明,发现靠经验,发明靠聪明,积极地思维,一个好的数学家要发现和发明要兼而有之,才能发现数学世界的新大陆,今天希望我们每一位同学和张老师一起努力既能做知识的发现者,又能做知识的发明者。

【新授】

复习旧知,启动研究问题。【出示题组】

师:老师给大家带来一组除法算式,看看大家谁的反应最快?(课件)

28÷4=2÷100= 6÷4= 0.7÷2= 9÷10=

师:两个数相除的商有可能是整数,也有可能是小数。

1÷6等与多少呢?

生①:0.1666…

师:1除以6除不尽,结果除了用循环小数,还可以用什么表示?

生②:

师:这是你的猜想,光猜想不行,我们还得验证,经天这节课我们就研究这个问题。

【评析】通过一组口算,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷6得不到一个准确的小数时,又该如何表示?这一问题激发了学生探索的积极*,渗透了合情推理的思维方法。

创设解决问题的情境,研究分数与除法的关系。