单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
初一下册数学知识点2
第七章三角形
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的*质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定*:三角形的形状是固定的,三角形的这个*质叫三角形的稳定*。
9.三角形内角和定理:三角形三个内角的和等于180
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的*质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与*质
多边形内角和公式:n边形的内角和等于(n2)180
20.多边形外角和定理:
(1)n边形外角和等于n180(n2)180=360
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n180
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n3)条对角线,把多边形分词(n2)个三角形。
(2)n边形共有n(n3)/2条对角线。
六、经典例题
例1如图,已知△abc中,aq=pq、pr=ps、prab于r,psac于s,有以下三个结论:①as=ar;②qp∥ar;③△brp≌△csp,其中().
(a)全部正确(b)仅①正确(c)仅①、②正确(d)仅①、③正确
例2如图,结合图形作出了如下判断或推理:
①如图甲,cdab,d为垂足,那么点c到ab的距离等于c、d两点间的距离;
②如图乙,如果ab∥cd,那么d;
③如图*,如果acd=cab,那么ad∥bc;
④如图丁,如果2,d=120,那么bcd=60.其中正确的个数是()个.
(a)1(b)2(c)3(d)4
例3在如图所示的方格纸中,画出,△def和△deg(f、g不能重合),使得△abc≌△def≌deg.你能说明它们为什么全等吗?
例4测量小玻璃管口径的量具cde上,cd=l0mm,de=80mm.如果小管口径ab正对着量具上的50mm刻度,那么小管口径ab的长是多少?
了初一下册数学知识点3
1.判断一个方程是不是二元一次方程,一般要将方程化为一般形式后再根据定义判断。
2.二元一次方程的解:一个二元一次方程有无数个解,而每一个解都是一对数值。求二元一次方程的解的方法:若方程中的未知数为x,y,可任取x的一些值,相应的可算出y的值,这样,就会得到满足需要的数对。
3.二元一次方程组:两个二元一次方程合在一起,就组成了一个二元一次方程组。作为二元一次方程组的两个方程,不一定都含有两个未知数,可以其中一个是一元一次方程,另一个是二元一次方程。
4.二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。检验一对数值是不是二元一次方程组的解的方法是,将两个未知数分别代入方程组中的两个方程,如果都能满足这两个方程,那么它就是方程组的解。
初一下册的数学知识点4
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认;
2.掌握对顶角相等的*质和它的推证过程;
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点
在较复杂的图形中准确辨认对顶角和邻补角;
两条直线互相垂直的概念、*质和画法;
同位角、内错角、同旁内角的概念与识别。
三、难点
在较复杂的图形中准确辨认对顶角和邻补角;
对点到直线的距离的概念的理解;
对平行线本质属*的理解,用几何语言描述图形的*质;
能区分平行线的*质和判定,平行线的*质与判定的混合应用。
四、知识框架
五、知识点、概念总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线*质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:
同位角:1与5像这样具有相同位置关系的一对角叫做同位角。
内错角:2与6像这样的一对角叫做内错角。
同旁内角:2与5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与*质
对顶角的*质:对顶角相等。
17.垂线的*质:
*质1:过一点有且只有一条直线与已知直线垂直。
*质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的*质:
*质1:两直线平行,同位角相等。
*质2:两直线平行,内错角相等。
*质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
21.命题的扩展
三种命题
(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
四种命题的相互关系
(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
(2)四种命题的真假关系:
两个命题互为逆否命题,它们有相同的真假*。两个命题为互逆命题或互否命题,它们的真假*没有关系
命题之间的关系
(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。
(2)若p,则q形式的命题中p叫做命题的条件,q叫做命题的结论。
(3)命题的分类:
a:原命题:一个命题的本身称之为原命题,如:若x1,则f(x)=(x1)2单调递增。
b:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x1)2单调递增,则x1.
c:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,
如:若x小于1,则f(x)=(x1)2不单调递增。
d:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,
如:若f(x)=(x1)2不单调递增,则x小于1.
(4)命题的否定
命题的否定是只将命题的结论否定的新命题,这与否命题不同。
(5)4种命题及命题的否定的真假*关系
原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假*相反。
充分条件与必要条件
(1)若p,则q为真命题,叫做由p推出q,记作p=q,并且说p是q的充分条件,q是p的必要条件。
(2)若p,则q为假命题,叫做由p推不出q,记作pq,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。
充要条件
如果既有p=q,又有q=p,就记作pq,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。
初一下册数学知识点总结5
整式的运算是初一下学期学习的第一章内容,主要讲解了整式的概念。以下是小编为大家整理的初一下册数学知识点总结,希望大家能喜欢。
一、代数初步知识
1、代数式:用运算符号“+—×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a。
二、几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2。
三、有理数。
1、有理数:
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;π不是有理数;
(3)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特*;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特*;
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,
5。有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。
四、有理数法则及运算规律。
1、有理数的运算法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
2、有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。
3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
4、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5、有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
7、有理数乘方的法则:
正数的任何次幂都是正数;
五、乘方的定义。
1、求相同因式积的运算,叫做乘方;
2、乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
3、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
4、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
5、混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。
6、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于*。
六、整式的加减。
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)
5、整式:单项式和多项式统称为整式
七、初一数学上册知识点:整式分类为
1、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
2、合并同类项法则:系数相加,字母与字母的指数不变。
3、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“—”号,括号里的各项都要变号。
4、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
5、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
八、一元一次方程
1、等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”!
2、等式的*质:
等式*质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式*质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3、方程:含未知数的等式,叫方程。
4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5、移项:改变符号后,把方程的项从一边移到另一边叫移项。移项的依据是等式*质1。
6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
8、一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。
9、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。
九、列一元一次方程解应用题。
1、读题分析法——多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
2、画图分析法——多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
初一数学下册基本知识点总结6
要经常整理知识点,才能让知识更加牢固,快一起来看看初一数学下册基本知识点总结吧!
第一章有理数
1.1正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
1.2有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
第二章一元一次方程
2.1从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linearequationwithoneunknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的*质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章图形认识初步
3.1多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3角的度量
1度=60分1分=60秒1周角=360度1平角=180度
3.4角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(piementaryangle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementaryangle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
第五章相交线与平行线
5.1相交线
对顶角(verticalangles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3平行线的*质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系
6.1平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(orderedpair)。
第七章三角形
7.1与三角形有关的线段
三角形(triangle)具有稳定*。
7.2与三角形有关的角
三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角
7.3多边形及其内角和
n边形内角和等于:(n2)?180度
多边形(polygon)的外角和等于360度。
第八章二元一次方程组
8.1二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linearequationsoftwounknowns)。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(systemoflinearequationsoftwounknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
第九章不等式与不等式组
9.1不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的*,简称解集(solutionset)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linearinequalityofoneunknown)。
不等式的*质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linearinequalitiesofoneunknown)。
第十章实数
10.1平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmeticsquareroot),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(squareroot)。
求一个数a的平方根的运算,叫做开平方(extractionofsquareroot)。
10.2立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cuberoot)。
求一个数的立方根的运算,叫做开立方(extractionofcuberoot)。
10.3实数
无限不循环小数又叫做无理数(irrationalnumber)。
有理数和无理数统称实数(realnumber)。
初一数学下册正数和负数的知识点7
导语:付出就要赢得回报,这是永恒的真理,自古以来很少有人能突破它。下面是小编为大家整理的,数学知识,更多相关信息请关注CNFLA相关栏目!
基础知识点:
1.1正数和负数
以前学过的0以外的数前面加上负号“”的书叫做负数。以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2有理数
1.2.1有理数——正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。
1.2.2数轴
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。⑵
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a与原点的距离是a个单位长度。
1.2.3相反数
在任意一个数前面添上“”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;00。
比较有理数的大小:⑴正数大于0,0
1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:⑴
⑵数相加得0。⑶一个数同0相加,仍得这个数。(a+b)+c=a+(b+c)
1.3.2有理数的减法
ab=a+(b)
1.4有理数的乘除法
1.4.1有理数的乘法
任何数同001
0;负因数的个数是奇数时,积是负数。
ab=ba
(ab)c=a(bc)
a(b+c)=ab+ac
⑴“”⑵数字与字母相乘,当系数是1或1时,1要省略不写。
⑶
用字母x2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“”,把括号和括号前的“”去掉,括号里各项都改变符号。
郑老师辅导您身边的专业辅导老师电话7333909
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。a÷b=a?(b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算*质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5有理数的乘方
1.5.1乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,aan看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a)用科学记数法表示一个n位整数,其中10的指数是n1。
1.5.3近似数和有效数字
从一个数的左边第一个非0
对于用科学记数法表示的数a×10n