学习目标:
1.通过将多边形分割成三角形,从而探索出多边形内角和的计算公式,并能进行应用.
2.经历*作、探索等活动,提高分析问题、解决问题的水平,提升从不同角度思考问题的能力.
学习重点:理解多边形的内角和公式的推导过程,体会化归思想.
学习难点:从不同角度思考问题.
导学过程:
【预习交流】
1.预习课本p27到p28,记下你的疑惑.
2.在△abc中,如果a=2b=3c,则△abc
是(按角分)三角形.
3.如图是一个五角星,则b+d+e=3题图4题图
4.如图,b+d+e=
5.直角三角形的两个锐角平分线所夹的钝角=
6.在△abc中,b=36,c=2b,则a=,b=,c=.
7.一个零件的形状如图中*影部分.按规定a应等于90,b、c应分别是29和21,检验
人员度量得bdc=141,就断定这个零件不合格.你能说明理由吗?
8.如图,已知△abc中,已知b=65,c=45,ad是bc边上的高,ae是bac的平分线,求dae的度数.
【点评释疑】
1.课本p27议一议.
结论:n边形的内角和为(n2)180.
2.课本p28想一想.
3.应用探究
(1)一个多边形的内角和是2340,求它的边数.
(2)一个多边形的各个内角都相等,且一个内角是150,你知道它是几边形吗?
(3)一个五边形截去一个角后,求剩下的多边形的内角和.
(4)一个多边形,除去一个内角外,其余各内角的和为2750,求这个多边形的边数.
(5)如图,求2+4的度数.
4巩固练习:课本p28练习1、2、3.
【达标检测】
1.多边形的内角和可能是()a.810b.540c.180d.605
2.如果一个四边形的一组对角都是直角,那么另一组对角可以()
a.都是锐角b.都是钝角c.是一个锐角和一个直角d.是一个锐角和一个钝角
3.一个多边形的边数增加1,则它的内角和将()a.增加90b.增加180c.增加360d.不变
4.多边形内角和增加360,则它的边数()a.增加1b.增加2c.增加3d.不变
5.若一个多边形的对角线有14条,则这个多边形的边数是()a.10b.7c.14d.6
6.一个十边形所有内角都相等,它的每一个内角等于.
7.如图,在四边形abcd中,1、2分别是bcd和bad的补角,
且adc=140,则2=.
8.已知九边形中,除了一个内角外,其余各内角之和是1205,求该内角.
9.将纸片△abc沿de折叠使点a落在a处的位置.
(1)如果a落在四边形bcde的内部(如图1),a与2之间存在怎样的数量关系?并说明理由.
(2)如果a落在四边形bcde的的be边上,这时图1中的1变为0角,则a与2之间的关系是.
(3)如果a落在四边形bcde的外部(如图2),这时a与1、2之间又存在怎样的数量关系?并说明理由.
【总结评价】
1.多边形内角和公式.
2.探求多边形内角和公式的方法.
【课后作业】课本p31习题7.57、9、10.
第2篇:小学三角形内角和课件
教学过程:
一、创设情景,引出问题
1、猜谜语:(课件)形状似座山,稳定*能坚。
三竿首尾连,学问不简单。(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。)3、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。(多让几个学生说一说)
2、猜一猜。
师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3*作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪*,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,*作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼a、学生上台演示。
b、请大家四人小组合作,用他的方法验证其它三角形。
c、展示学生作品。d、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、*作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法*三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(blaisepascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个含有2个直角的三角形?1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经非常清晰,出示2个三角形,生分别说出内角和。
把两个小三角形拼在一起,问:大三角形的内角和是?度。教师:为什么不是360°?三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!1、看图,求未知角的度数2、书上88页10题。
教师:刚才,我们利用了三角形的什么?
3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数:
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、判断。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。)
四、总结。
师:这节课你有什么收获?
第3篇:三角形内角和说课课件
一、说教材
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特*》以及《三角形三边关系》、《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能、教学过程与方法、情感态度价值观三方面拟定了本节课的教学目标:
1.通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2.通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。
3.通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识、探索精神和实践能力。
(三)教学重、难点
因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二、说教法、学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量、折一折、撕一撕、画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察、*作、猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手*作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测验证”展开学习活动,让学生感受这种重要的数学思维方式。
三、说教学过程
我以引入、猜测、证实、深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
(一)引入
呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。(把图形中相邻两边的夹角称为内角)长方形有几个内角?(四个)它的内角有什么特点?(都是直角)这四个内角的和是多少?(360°)三角形有几个内角呢?从而引入课题。
【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。
(二)猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢?
【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度?
(2)撕?拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角?请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造*思维得到了充分发挥。
(四)深化
质疑:大小不同的三角形,它们的内角和会是一样吗?
观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。)
结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。
实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时,
结论:活动角就是一个平角180°,另外两个角都是0°。
【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角的大小与边的长短无关”的旧知识来理解说明。
对于利用精巧的小教具的演示,让学生通过观察、交流、想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。
教材分析
“三角形的内角和”是三角形的一个重要*质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、“三角形的特征”和“三角形的分类”等知识的基础上进行教学的,这些知识已熟练掌握,但动手*作能力和思维创新的意识还有待培养。
教学目标
根据教学内容及学生自身的特点,我制定了以下教学目标:
1、知识与技能:明确三角形的内角的概念,促使学生自主探究和发现三角形内角和等于180°。
2、过程和方法:①通过学生猜、量、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手*作能力。②能运用三角形内角和是180°这一规律来解决实际问题。
3、情感与态度:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的喜悦,增强学好数学的信心。
重点和难点
教学重点:动手*作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°,来拓宽学生思路。
课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐角三角形、直角三角形、钝角三角形各两个,量角器、剪*。
教学过程
一、创设情境,引入新知。
导入:“同学们,今天老师请来了一些小朋友和大家一同学习,你们瞧,他们来了。你们认识吗?“(出示三角形动画课件),让学生依次说出各是什么三角形,通过这样的复习方式,让学生回顾了前面所认识的几种三角形,为下面的教学做好了铺垫。
在此基础上,我马上询问学生:“你们发现这些三角形有什么共同点吗?”通过这样的引导,不少学生发现它们都有三个角,我及时给予了肯定,并向学生介绍:“这三个角就叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。可是有一次,这些三角形为它们各自内角和的大小发生了争吵,让我们一起去看看吧!”
接着我出示情境课件,【大三角形说:“我的个头大,所以我的内角和最大。”直角三角形,不服气:“哼,我才不信呢?”钝角三角形说:“我有一个角最大,应该是我的内角和最大。”“我的大!”、“我的大!”……】就在他们争论不休时,我关闭课件,对学生说:“同学们,你们看,他们为内角和的大小,争得不可开交,究竟谁说得对呢?今天这节课,我们就一起探讨三角形的内角和。”就这样,在情境中揭示了课题,让学生带着解决问题的强烈欲望来展开探究活动。
二、动手*作,自主探究
1、*作感知。
为了让学生初步感知三角形的内角和,请学生先大胆猜一猜三角形的内角和是多少?然后组织学生画出一个任意三角形,测量各角的度数,并计算出它的内角和,由于测量存在误差,学生汇报的结果有179°、180°、178°、181°等等,用接近180°来概括并板书度量法的结果,
2、剪拼验证:
安排学生进行剪一剪、拼一拼的活动,自主发现规律,掌握规律。为了完成这些活动,设计四人小组合作的学习方式:你们能把
3、折叠验证:
为了再一次验证三角形内角和等于180°,我又设计了“折一折”的学习活动,同样先采用多媒体进行直观演示,再让学生折一折,叠一叠。当学生出现这样(多媒体演示)的错误时,我没有做出消极的评价,而是把问题交给大家,通过讨论、交流,找到正确的折叠方法,让学生充分享受成功的喜悦,体会到了学习数学的乐趣。在这轻松、活跃的课堂气氛中,我把学生得出折叠法的结论也进行了板书。
三、应用规律,解决实际问题:
揭示规律后,学生要掌握知识,形成技能和技巧,就要通过解答实际问题的练习来巩固内化,为了让学生积极参与,我设计了闯三关的活动来激励学生做题的兴趣。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。
②求等边三角形每个角的度数是多少。
这两个提高练习的安排,是为了让学生灵活应用隐含条件来解决问题,使学生的思维能力得到了进一步提高。
第三关:拓展练习。
针对不同思维能力的学生,我设计的拓展题目要求学生应用“三角形内角和是180°”的规律,求四边形和五边形的内角和(多媒体出示)。考虑到学生空间思维能力的局限*,我用多媒体课件演示,通过画对角线的方法,把四边形和五边形都分成几个小三角形,让学生们体会到学以致用,通过本道题练习,既能对学生进行思维训练,又能培养应用知识的能力,更能培养学生的创新精神。
这样的练习安排可以兼顾不同能力的学生,从易到难,逐步加深,还富有趣味*。在保证基本教学要求的同时,尽量满足学生的学习需要,更重要的是数学思维得到不断的发展。
四、课堂小结:
我认为一堂成功的好课要有一个好的开头,更要讲究一个完整的结尾,我在课堂的最后进行这样的小结:同学们通过这节课的学习,学到了什么?有什么感受呢?学生们个个跃跃欲试,畅所欲言,欲罢不能,把整堂课的气氛推向了最高潮。
说板书设计【多媒体展示板书】
最后,说说我的板书设计,遵循了板书的目的*原则、概括*原则、简炼*原则、直观*原则,简洁明了,能帮助学生把整堂课的学习内容融入大脑。
【说课结束语】
本节课通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦,从根本上改变旧的教学模式,使学生在自主中学习,在探究中发现,在发现中成长,最终实现学生可持续*发展。
以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
第4篇: 三角形的内角和课件和教案
三角形的内角和(1)课件和教案
课件简介:
学习目标:
1.能用不同的方法探索并了解三角形3个内角之间的关系;;
2.会利用三角形的内角和定理解决问题;
3.知道直角三角形的两个锐角互余的关系;
4.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。
学习重点:
三角形的内角和定理
学习难点:
三角形内角和定理推理和应用
教学过程:
一、情境创设,感悟新知
1、三角形蓝和三角形红见面了,蓝炫耀的说:“我的面积比你大,所以我的内角和也比你大!”
红不服气的说:“那可不好说噢,你自己量量看!”
蓝用量角器量了量自己和红,就不再说话了!
同学们,你们知道其中的道理吗?
三角形三个内角的和等于180°
2、你有什么方法可以验证呢?
方法一:度量法.
方法二:剪拼法.
3、你还有其他说明方法吗?
二、探索规律,揭示新知
1、议一议:如图,3根木条相交得∠1、∠2.若a∥b,则∠1+∠2=.
理由:.
2、*作:把木条a绕点a转动,使它与木条b相交于点c.根据图形,你能说明“三角形3个内角的和等于1800”的理由吗?
3、说理:
(补充说明:也可以转化为平角进行说明。)
4、方法小结:在这里,为了说明的需要,在原来的图形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。
5、你还有其他方法说明“三角形3个内角的和等于1800”吗?
(1)
(2)
6、思路总结:为了说明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用思想方法.
三、尝试反馈,领悟新知
例1:如图,ac、bd相交于点o,∠a与∠b的和等于∠c与∠d的和吗?为什么?
例2.如右图,在△abc中,∠a=3∠c,∠b=2∠c求三个内角的度数。
若将条件改为∠a:∠b:∠c=2:3:4,又如何解呢?
四、拓展延伸,运用新知
1、随堂练习
2.结论:直角三角形的两个锐角互余.
3、巩固练习:
①、△abc中,若∠a+∠b=∠c,则△abc是()
a、锐角三角形b、直角三角形
c、钝角三角形d、等腰三角形
②、在一个三角形的3个内角中,最多能有几个直角?最多能有几个钝角呢?为什么?
③、如图△abc中,cd平分∠acb,∠a=70度,∠b=50度,求∠bdc的度数。
五、课堂小结,内化新知
1本节课你有哪些收获?
2你还有什么疑问?
六、布置作业,巩固新知
1、必做题:
习题7.5第1、2、3、4题。
2、选做题。
如右图:试求出图中∠1+∠2+∠3的度数
七、教学寄语,拓宽课堂
老师寄语:
ifyouwishtolearnswimming,youhavetogointothewater,andifyouwishtobeeaproblemsolver,youhavetosolveproblems.
如果你想学会游泳,你必须下水;
如果你想成为解题能手,你必须解题
第5篇:三角形的内角和教学课件设计
一、教材内容分析
三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特*和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手*作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验*作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索.实验.发现.验证三角形内角和是180度。
二、教学目标(知识,技能,情感态度、价值观)
知识于技能:让学生通过亲自动手量.剪.拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。
过程与方法:让学生在动手获取知识的过程中,培养学生的创新意识和实践能力。并通过动手*作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想
情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。
三、学习者特征分析
学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手*作能力和主动探究能力。因此概念的形成是通过量.算.拼等活动,让学生探索.实验.发现.讨论.推理.归纳出三角形的内角和是180度。
四、教学策略选择与设计
1.关注学生的学习过程,注意培养学生动手*作能力以及和作与交流的能力,培养应用和创新意识。
2.从学生已有的知识和生活经验出发,让学生通过*作.观察.思考.交流.推理.归等活动,培养学生的学习兴趣,体验数学的价值。
五、教学环境及资源准备
教具准备;多媒体课件.一副三角板。
学具准备:量角器.各种三角形.剪*等。