1、圆柱
(1)圆柱的认识
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教具准备:学生准备圆柱,师自制圆柱体侧面展开纸,一张长方形纸。切好的圆柱形萝卜,水果*。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:c=2πr或c=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判*是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)一根竖放的大针管中的*水由高到低的变化过程,引导学生思考:*水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生*作分析,得出测量圆柱边上的这条高最为简便,同时上的圆柱体闪烁边上的一条高.也可以用笔筒来教学圆柱的高。
4.圆柱的侧面展开(例2)
(1)动手*作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复*作中观察。
②学生再观察上述过程.(用彩*线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”,指出圆柱体的底面,侧面和高。
2.做第15页练习二的第2题找出圆柱体。
3.15页第3题,想一想,折一折,能得到什么图形。
3.做第15页练习二的第4题。教师行间巡视,对有困难的学生及时辅导。
四、布置作业
完成一课三练p15的1、2题。
(2)圆柱的表面积
教学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践*作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.(删掉)
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
3.理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过*作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
二、圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
①这两道题分别已知什么,求什么?
②计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生*进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2.练习七第6题
3.一台压路机的前轮是圆柱体,轮宽2米,直径1.2米。前轮转动一周,压路机的面积是多少平方米?
4.广告公司制作了一个底面直径是1.5米高2.5米的圆柱形灯箱。它的侧面最多可以张贴多大面积的海报?
5修建一个圆柱形沼气池,底面直径是3米,深2米。在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?
教学反思:本节课以解决问题为主线,给学生创设探究的舞台。让学生动手*作,经历立立图形与平面图形之间“展--合--展”的转化过程,体会到“化曲为直”的思想在数学中的应用。练习注重把所学知识应用到生活中,让学生体会到生活中的问题不有死用数学公式来解决,要根据实际情况灵活解答,达到了学以致用的目的,提高了学生解决问题的能力。
(3)圆柱的体积
教学内容:p19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)
2、教学补充例题(删掉)
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①v=sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
v=sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
v=sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
v=sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)
(4)做第20页的“做一做”。
学生*做在练习本上,做完后集体订正.
出示一组习题:
1一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?
2一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?
3一个圆柱的周长12.56厘米,高3厘米,体积是多少立方厘米?
3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?(
4、教学例6
(1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)
(1)学生尝试完成例6。
①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(c2)
②杯子的容积:50.24×10=502.4(c3)=502.4(l)
(2)学生见解例题,师补充
三、巩固练习
1.一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?
2.一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?
3.一个圆柱形粮囤,从里面量得底面半径是1.5米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?
4钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。
板书:
圆柱的体积=底面积×高v=sh或v=πr2h
例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(c2)
②杯子的容积:50.24×10=502.4(c3)=502.4(l)
教学反思:以旧引新,培养学生的自主学习能力。加强直观*作,培养学生的动手*作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在*作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。
2、圆锥
(1)圆锥的认识
教学内容:教科书p23-26的内容,p24“做一做”,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、通过动手制作圆锥和测量圆锥的高,培养学生的动手*作能力和一定的空间想象能力。
3、培养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
教具准备:每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识(直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页“做一做”的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着*量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
补充习题:
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:观察,,感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
(2)圆锥的体积
教学内容:第25~26页,例2、例3及练习四的第3~8题。
教学目的:
通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
借助已有的生活和学习经验,在小组活动过程中,培养学生的动手*作能力和自主探索能力。
通过小组活动,实验*作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系
教具准备:每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.
(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
组织学生实验分组合作学习:
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)
学生叙述实验过程并总结结论,得出计算公式
板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,
字母公式:v=1/3sh
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3、巩固练习:完成练习四第4题。
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
三、巩固练习
1、做练习四的第7题。
学生先*判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题:
①这道题已知什么?求什么?
②求圆锥的体积必须知道什么?
③求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题:
①圆柱的侧面积等于多少?
②圆柱的表面积的含义是什么?怎样计算?
③圆柱体积的计算公式是什么?
④圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
填空:
1、圆锥体体积的计算公式()
2、等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的( )。
3、等底等高的圆锥体体积是3立方厘米,圆柱体的体积是( )。
4、体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高( )。
5、体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是( )。
6、等底等高的圆柱和圆锥,圆柱比圆锥的体积大( )。
判断:
1、圆柱体的体积一定比圆锥体的体积大.
2、圆锥的体积等于和它等底等高的圆柱体的1/3.
3、圆锥体、正方体、长方体的体积都等于底面积×高。
4、圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。
补充习题:
1一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?
2一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
3.一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?
4.在一个底面半径是10c的圆柱形水桶中装有水,把一个底面半径为5c的圆锥形铁锤浸没在水中,水面上升了1c,试问铁锤的高是多少?
5.等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?
四、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
教学反思:从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要*,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。
整理和复习
教学内容:p29页第1-3题,完成练习五。
教学目标:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱与圆锥的特征
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?
(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)
2.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?
(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)
(2)做第29页第1题
二、圆柱的表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:
圆柱的侧面是指哪一部分?它是什么形状的?
(长方形或正方形)
圆柱的侧面积怎样计算?
(底面的周长×高)
为什么要这样计算?
(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?
(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
三、圆柱和圆锥的体积
1、圆柱的体积怎样计算?
(底面积×高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(v=sh)
2、圆锥的体积怎样计算?
(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(v=1/3sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
3、做第29页第2题
4、学生*完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
四、课堂练习
1、做练习五的第1题。(学生*判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生*完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
一个圆锥形沙堆,度面积是28.26平方米,高是2,。5米。用这堆这堆沙在10米宽的公路上铺2米厚的路面,能铺多少米、
4.有块正方形的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱,这个圆柱的体积是多少?若加工成最大的圆锥呢,它的体积又是多少立方分米呢?
5.右图是一个粮仓,上面是圆锥形,下面是一个圆柱形,如果粮仓墙壁的厚度不计,这个粮仓的容积式多少立方米?上面圆锥的高是3米,圆柱的高是5米,底面直径8米。(图略)
《第2篇:六年级下册小学数学《圆柱与圆锥》教学设计》
一、教材分析:
本课内容是九年制义务教育课程标准实验教材(苏教版)六年级下册第1820页《圆柱和圆锥的认识》。学生已经在一年级的时候初次认识了圆柱,已经会辨别;圆锥这一立体图形没有见识过,从未接触;在六年级上学期又认识了长方体和正方体这两种立体图形,积累了一些观察p探索立体图形特点的学习经验,这些都为本课的进一步学习奠定了基础。
二、学生情况分析:
由于已经是六年级的学生了,他们的主观*和能动*已经有较大的提高,能够有意识地去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手*作能力、语言表达能力有所发展。所以在教学时适宜让学生自主探究,合作交流,动手实践,让学生在具体情境中亲自体验感知圆柱和圆锥的特征。
三、设计意图:
(一)预习设计:
由于本课属于观察物体领域的内容,须借助于直观的实物或模型帮助体验,感悟圆柱和圆锥的各部分名称和它们的特点,因此我在设计时安排了两个环节:1.课前准备(即收集生活中的实物和学具的制作)2.自学教材内容,自主探究圆柱和圆锥的特征。
(二)新授设计:
在课一开始,让学生先回顾以前学过的一些立体图形,拿出学生课前收集的一些实物,让学生分别展示,介绍。从而自然引出课题:圆柱和圆锥的认识。接着,让学生小小组内交流预习作业,并提出交流和汇报的要求,让每个学生都积极参与倾听和主动发言的机会,试图改变只有少数几个优秀同学唱独角戏的局面。在大组汇报的时候,尽可能地让学生代表边演示边介绍发现的圆柱和圆锥的名称和相关特征,其他小组提出相关补充或修改意见,教师根据学生的讲述相机课件演示,更加深了印象,凸显本课的教学重点,为后面的比较p总结圆柱和圆锥的相同点和不同点作铺垫。然后让学生欣赏生活中的圆柱和圆锥图片,再次感受数学的生活价值。
(三)练习设计:
本环节安排了说一说,判一判,连一连,做一做,猜一猜等活动,试图让学生灵活运用所学的知识解决实际问题。课堂练习单第4题在试教的时候发现学生在解题时有点难度,我觉得这时要适当点拨,指导一下。
四、试教反思:
本节课为了实现教学方式的多样化:学生自主探索、合作交流;教师引导为主,帮助为辅,我进行了尝试。从教学内容方面,本部分知识适合采取这种方式:有*作的情境,有活动的空间。从学生方面,学生的求知欲较强,活动能力相比有大的提高,他们能对同一个情境提出不同的解决问题的方法。从学生情感方面来看,他们喜欢合作交流的方式。但是由于本课准备得比较匆忙,有些环节的处理不够细腻,不太成熟,对课堂上生成的一些“意外”估计不足,教学机智不够灵活,所以还要有待于进一步提升,请各位领导,老师多提宝贵意见。
《第3篇:小学六年级认识圆柱和圆锥下册数学教学设计》
板书设计:
认识圆柱和圆锥
观察—比较—归纳
第二课时:
圆柱的侧面积和表面积
教学内容:
教材第11页的例2、第12页的例3和第12页的“练一练”,完成练习二第4~6题。
教学目标:
1、让学生经历*作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。
2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。
3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教学重难点:
1、理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。
2、培养学生观察、*作、概括的能力和利用所学知识解决实际问题的能力。
教学准备:
师生各备一易拉罐,并把上下面用彩纸包好,剪*、胶水、圆规、白纸一张、计算器。
教学过程:
一、实验导入,渗透思想
⒈(出示一张长方形纸)老师这儿有一张长方形纸,我想让它站起来,你有什么办法吗?
小结:原来在一定条件下平面可以“化直为曲”。
⒉把这个圆柱形的纸筒打开后是什么形状?
小结:同样地,在一定条件下曲面可以“化曲为直”。
⒊揭题:这节课将运用这个知识来研究圆柱的侧面积和表面积。(板:圆柱的侧面积和表面积)
二、引导探究,学习新知
(一)圆柱的侧面积的计算
老师发现同学们特别爱喝饮料,今天我们共同带来了一瓶椰子汁,看到它,你能提出什么数学问题来?
师引导:我们就来先来解决这位同学提出的商标纸问题,其实就是求什么?(圆柱的侧面积)
1、引导探究圆柱侧面积的计算方法
①设疑:圆柱的侧面是个曲面,怎样计算商标纸的面积呢?
②全班交流:沿着接缝把商标纸剪开,再展平。
③小组合作探究:
那就让我们一起来研究一下,听清要求:先*剪开商标纸展开,再观察展开后的图形与原来的圆柱有什么关系?把你的发现在小组里交流一下。接头处忽略不计。
④汇报交流:哪个小组愿意上来汇报一下你们的发现?指名上台拿着学具汇报,生。(师再追问:通过刚才同学的汇报,我们知道了这个长方形的长和宽与圆柱有什么关系呀?学生回答,师适时板书)
⑤怎样计算圆柱的侧面积?再次追问:为什么?(补充板书)
⑥小结:你们真不错,巧妙地运用化曲为直,探讨发现了圆柱侧面积的计算方法。
2、计算圆柱的侧面积
①现在请你计算一下这罐椰子汁所用商标纸的面积(出示椰奶罐的底面周长约是厘米,高约是厘米)你是怎样算的?
②解决例2:
但在实际生活中有时不直接告诉你底面周长,例如怎么算?学生*做在书上,指名一生板演,集体反馈。
③思考:要求一个圆柱的侧面积,通常需要知道哪些条件?
④小结:如果没有直接告诉底面周长,应用已知直径(或半径)求周长的方法,然后求侧面积。
(二)探索圆柱表面积的计算方法
1、理解圆柱表面积的含义
①动手贴出圆柱表面积:拿着实物,光这样一个侧面能装饮料吗?还需加上(两个底面)我们把这个圆柱饮料罐各部分一一展开粘在纸上(学生动手*作,师巡视发现两种常见粘法)交流展示,最好这样放。
看着圆柱展开图,让它在头脑中动起来(长方形的长等于…宽等于…)这样我们可以更清楚地想象出长方形与圆柱的关系。
指着图,由这些些部分组成了圆柱的表面积,什么是圆柱的表面积?(板书)
②动手画出圆柱表面展开图:下面我们要画圆柱的展开图,画前先算一算,学生算好后回答,师板书。
要求画在书上的方格纸上,友情提醒:一要想要画出圆柱的哪几个面?二要注意每个方格纸边长厘米,根据算的数据合理布局。(实物投影展示学生作品,作评价)
3、怎样计算圆柱的表面积?
①例3中的圆柱表面积会算吗?
*做在书上,交流反馈:每步求出的是什么?指出:解答时为清楚最好分步算出各部分面积。
②出示易拉罐的数据,图例:半径:2.5厘米,高:12厘米,求铁皮用料。
③要求一个圆柱的表面积,通常需要知道哪些条件?
三、应用练习,巩固深化
过渡:在实际生活中,有很多圆柱体实物,你会根据实际算出它们要求的面积吗?
1、教材第12页“练一练”(理解题意要求的是圆柱的哪部分面积后*做)
2、练习二第6题。(通过填表帮助学生进一步区分圆柱的侧面积、底面积、表面积三个不同的概念和不同的算法;整理侧面积、底面积与表面积之间的联系,使计算圆柱表面积的思路更加清楚)
四、全课总结,认识升华
通过今天这节课的学习,你有哪些收获?还有什么问题吗?
五、课堂作业
练习二第4、5题。
板书:
圆柱的底面周长=长方形的长
圆柱的高=长方形的宽
圆柱的侧面积=底面周长*高
s=ch
圆柱表面积=1个侧面积+2个底面积
《第4篇:苏教版六年级下册数学《圆柱和圆锥》的教学设计》
教学目标:
1、使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样*。
2、在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。
3、在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验。
重点难点:
掌握用转化的策略解决分数问题的方法。根据具体问题,确定转化后要实现的目标和转化的方法。
教学过程:
一、回顾旧知,整理策略
谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的从条件向问题推理和从问题向条件推理,帮助理解题意的列表整理和画图整理,还有枚举转化假设与替换等策略)
提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)
二、合作探究,运用策略
1、教学例1(课件出示例1)
学生读题,自主完成。
谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)
小组交流方法。
汇报交流情况:(学生遇到困难可作适当的引导。)
①根据男生人数是女生的2/3理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。
②根据分数2/3的意义,可以推理出男生人数和女生人数的比是2∶3。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。
③根据分数2/3的意义,想到女生人数看作3份,男生人数是2份,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。
④把作为单位1的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。
谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(多名学生回答,征求看法。)
刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)
2、做第28页的练一练
引导学生运用刚才学过的策略,用自己喜欢的方法来解决。
要求学生说说你选择了什么策略,是怎样想的(通过他们在交流中获得这些体验,让学生体会方法的多样*。)
三、巩固练习,回顾策略
1、练习五第1题。
要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。
2、练习五第2题。
根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。
四、课堂小结,提升策略
五、课堂作业:练习五第3题。
《第5篇:六年级下册数学《圆柱和圆锥》知识点》
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积2即s表=s侧+s底2或2h+2
7、小学六年级下册数学《圆柱和圆锥》知识点:圆柱的侧面积=底面周长高即s侧=ch或2
8、圆柱的体积=圆柱的底面积高,即v=sh或r2
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即v锥=1/3sh或r2h
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
《第6篇:六年级数学下册圆柱和圆锥训练试题》
一、填空题。(每空2%,共32%)
1、一棱长是10分米的正方体容器装满水后,倒入一个底面积是20平方分米的圆锥形容器里正好装满,这个圆锥形容器的高是()分米。
2、把一个棱长是10分米的立方体钢柸切成一个最大的圆柱,这个圆柱的体积是()立方分米。
3、一个圆锥形沙堆,底面半径2米,高1.5米,用这个沙堆在6米宽的公路上铺2厘米厚的路面,能铺()米。
4、把体积是216cm3的圆柱削成一个最大的圆锥,需要削去()cm3。
5、等底等高的圆柱和圆锥的体积和是200立方分米,圆柱的体积是()立方分米,圆锥的体积是()立方分米。
6、一根圆柱形有机玻璃棒体积是56cm3,底面积是4cm3,把它平均截成5段,每段长()cm,表面积增加了()cm3。
7、一个圆锥的体积是62.8立方分米,底面半径是4分米,这个圆锥的高是()分米。
8、42个铁圆锥可以熔铸成()个等底等高的圆柱体。
9、一个圆柱有()条高,一个圆锥有()条高。
10、一个高10分米的圆柱由两个完全一样的圆柱拼成,分开后表面积增加了50.24平方分米。原来品尝拼成的圆柱的体积是()。
11、圆柱的底面半径扩大为原来的6倍,高不变,底面积扩大为原来的()倍,底面周长扩大为原来的()倍,侧面积扩大为原来的()倍,体积扩大为原来的()倍。
二、选择。(每小题2%,共20%)
1、圆柱体的底面半径和高都扩大3倍,它的体积扩大()倍。
A.3B.6C.9D.27
2、圆柱体的体积和底面积与一个圆锥体相等,圆柱体的高是圆锥体的()。
A.3倍B.2倍C.
3、一个瓶子可装油500毫升,我们就说这个瓶子的()是500毫升。
A.体积B.容积C.重量
4、高相等、底面周长也相等,体积最大的是()。
A.长方体B.圆锥体C.圆柱体
5、一根长1.5米圆柱木料,把它截成4段,表面积增加了24平方厘米,原来木料的体积是()立方厘米。
A.450B.600C.6
6、把一个大圆柱分成两个小圆柱后发生变化的是()
A、圆柱的体积B、圆柱的表面积C、圆柱的侧面积
7、压路机的前轮转动一周能压多少路面是指()
A、前轮的体积B、前轮的表面积C、前轮的侧面积
8、一个圆锥的体积是31.4立方分米,底面直径是2分米,高是()分米。A、10B、30C、60
9、把一个圆柱体的侧面展开得到一个边长4分米的正方形,这个圆柱体的体积是()立方分米
A、16B、50.24C、100.48
10、把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。
A、扩大3倍B、缩小3倍C、扩大6倍D、缩小6倍
三、数学的应用。(38%)
1、一个圆柱形状的油桶,从里面量,它的底面直径是高的,高是60厘米。这个油桶能装80升油吗?(4%)
2、大厅里有10根圆柱子,底面周长和高均为2.5米、6米,在这些柱子的表面涂漆,平均每平方米用漆0.5千克,共需多少油漆?(4%)
3、压路机的滚筒是个圆柱,它的长是2米,滚筒横截面的半径是0.5米,如果滚每分钟转动15周,(1)3分钟能前进多少米?(2)3分钟能压路面多少平方米?(6%)
4、在打谷场上,有一个近似圆锥的小麦堆,测得底面直径是4米,高是1米。每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整十千克数。)(6%)
5、一个圆柱形水池,直径是20米,深4米。(1)这个水池占地面积是多少?(2)挖成这个水池,共需挖土多少立方米?(3)在池内侧面和池底抹一层水泥,水泥面的面积是多少平方米?(6%)
6、婉筝用一团橡皮泥搓成了一个底面直径8厘米、高9厘米的圆柱体。如果把它改制成高是12厘米的圆锥体,圆锥体的底面积是多少平方厘米?(6%)
7、一个圆柱高10分米,体积是12.56立方分米,比与它等底的圆锥的体积多3.14立方分米,这个圆锥的高是多少?(6%)
四、*作(10%)
把一张完整的练习纸围成圆柱,有几种围法?(画草图,4%)比较这两种圆柱的相同点和不同(6%)
《第7篇:六年级下册数学圆柱和圆锥复习资料》
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即s表=s侧+s底×2或2πr×h+2×π
7、圆柱的侧面积=底面周长×高即s侧【小学生期中复习】=ch或2πr×
8、圆柱的体积=圆柱的底面积×高,即v=sh或πr2×
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即v锥=1/3sh或πr2×h÷
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
《第8篇:(苏教版)六年级下册小学数学说课稿:圆柱与圆锥》
一、教材分析:
本课内容是九年制义务教育课程标准实验教材(苏教版)六年级下册第1820页《圆柱和圆锥的认识》。学生已经在一年级的时候初次认识了圆柱,已经会辨别;圆锥这一立体图形没有见识过,从未接触;在六年级上学期又认识了长方体和正方体这两种立体图形,积累了一些观察?探索立体图形特点的学习经验,这些都为本课的进一步学习奠定了基础。
二、学生情况分析:
由于已经是六年级的学生了,他们的主观*和能动*已经有较大的提高,能够有意识地去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手*作能力、语言表达能力有所发展。所以在教学时适宜让学生自主探究,合作交流,动手实践,让学生在具体情境中亲自体验感知圆柱和圆锥的特征。
三、设计意图:
(一)预习设计:
由于本课属于观察物体领域的内容,须借助于直观的实物或模型帮助体验,感悟圆柱和圆锥的各部分名称和它们的特点,因此我在设计时安排了两个环节:1.课前准备(即收集生活中的实物和学具的制作)2.自学教材内容,自主探究圆柱和圆锥的特征。
(二)新授设计:
在课一开始,让学生先回顾以前学过的一些立体图形,拿出学生课前收集的一些实物,让学生分别展示,介绍。从而自然引出课题:圆柱和圆锥的认识。接着,让学生小小组内交流预习作业,并提出交流和汇报的要求,让每个学生都积极参与倾听和主动发言的机会,试图改变只有少数几个优秀同学唱独角戏的局面。在大组汇报的时候,尽可能地让学生代表边演示边介绍发现的圆柱和圆锥的名称和相关特征,其他小组提出相关补充或修改意见,教师根据学生的讲述相机课件演示,更加深了印象,凸显本课的教学重点,为后面的比较?总结圆柱和圆锥的相同点和不同点作铺垫。然后让学生欣赏生活中的圆柱和圆锥图片,再次感受数学的生活价值。
(三)练习设计:
本环节安排了说一说,判一判,连一连,做一做,猜一猜等活动,试图让学生灵活运用所学的知识解决实际问题。课堂练习单第4题在试教的时候发现学生在解题时有点难度,我觉得这时要适当点拨,指导一下。
四、试教反思:
本节课为了实现教学方式的多样化:学生自主探索、合作交流;教师引导为主,帮助为辅,我进行了尝试。从教学内容方面,本部分知识适合采取这种方式:有*作的情境,有活动的空间。从学生方面,学生的求知欲较强,活动能力相比有大的提高,他们能对同一个情境提出不同的解决问题的方法。从学生情感方面来看,他们喜欢合作交流的方式。但是由于本课准备得比较匆忙,有些环节的处理不够细腻,不太成熟,对课堂上生成的一些“意外”估计不足,教学机智不够灵活,所以还要有待于进一步提升,请各位领导,老师多提宝贵意见。
《第9篇:六年级数学下册第三单元圆柱与圆锥的教案》
1.圆柱的侧面积。
课题圆柱的体积课型讲授课课时总数1
教学反思
课题解决问题课型讲授课课时总数1
作业布置完成练习五的第8——10题。
作业布置完成练习六的第8—10题。
教学反思
课题整理和复习课型复习课课时总数1
备课人马志友
陈发秀审核人授课人授课
日期教材
分析本节教材内容是对圆柱与圆锥这一单元的知识进行系统地整理和复习,始终注意引导学生把握圆柱与圆锥的联系与区别,使学生更加明晰相关概念,灵活运用计算公式。
教学目标
1、通过整理和复习,使学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。
2、综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。
教学重点与难点
重点归纳整理有关圆柱和圆锥的知识,形成知识体系。
难点综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。
法制教育渗透知识点
教学用具圆柱、圆锥模型
教法、学法回归所学,理清脉络,形成知识体系。
课时序数
教学过程动态修改栏
教学环节及内容师生互动(具体教、学设计)
一、谈话引入,揭示课题。
1、谈话。
同学们,第三单元我们学习了什么内容?今天,老师要检查你们对本单元的知识掌握情况。
2、揭示课题:整理和复习
二、知识梳理
1、结合教材第37页第1题,回顾圆柱、圆锥的特征。
2、复习圆柱的侧面积和表面积
3、复习圆柱、圆锥的体积
4、知识应用。
1、结合教材第37页第1题,回顾圆柱、圆锥的特征。
(1)圆柱的特征。
(2)圆锥的特征。
2、复习圆柱的侧面积和表面积
(1)出示圆柱的表面展开图,先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第37页第2题中求圆柱表面积的部分。
3、复习圆柱、圆锥的体积
(1)圆柱的体积怎样计算?(圆柱体的体积=底面积×高,用字母表示:v=sh)
(2)怎样计算圆锥的体积?(圆锥体的体积等于和它等底等高的圆柱体体积的三分之一,计算圆锥体积的字母公式是v=sh)(3)做第37页第2题中关于圆柱、圆锥体积的部分。
4、知识应用。
学生*完成第37页第3、4题。
三、课堂练习完成练习七的第1、3、6题。
四、分享收获本单元结束了,你有什么收获?